Entropy Decay in the Swendsen Wang Dynamics on Zd

Antonio Blanca, Pietro Caputo, Daniel Parisi, Alistair Sinclair, Eric Vigoda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Citations (SciVal)

Abstract

We study the mixing time of the Swendsen-Wang dynamics for the ferromagnetic Ising and Potts models on the integer lattice Zd. This dynamics is a widely used Markov chain that has largely resisted sharp analysis because it is non-local, i.e., it changes the entire configuration in one step. We prove that, whenever strong spatial mixing (SSM) holds, the mixing time on any n-vertex cube in Zd is O(logn), and we prove this is tight by establishing a matching lower bound. The previous best known bound was O(n). SSM is a standard condition corresponding to exponential decay of correlations with distance between spins on the lattice and is known to hold in d=2 dimensions throughout the high-temperature (single phase) region. Our result follows from a modified log-Sobolev inequality, which expresses the fact that the dynamics contracts relative entropy at a constant rate at each step. The proof of this fact utilizes a new factorization of the entropy in the joint probability space over spins and edges that underlies the Swendsen-Wang dynamics, which extends to general bipartite graphs of bounded degree. This factorization leads to several additional results, including mixing time bounds for a number of natural local and non-local Markov chains on the joint space, as well as for the standard random-cluster dynamics.

Original languageEnglish (US)
Title of host publicationSTOC 2021 - Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
EditorsSamir Khuller, Virginia Vassilevska Williams
PublisherAssociation for Computing Machinery
Pages1551-1564
Number of pages14
ISBN (Electronic)9781450380539
DOIs
StatePublished - Jun 15 2021
Event53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021 - Virtual, Online, Italy
Duration: Jun 21 2021Jun 25 2021

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021
Country/TerritoryItaly
CityVirtual, Online
Period6/21/216/25/21

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Entropy Decay in the Swendsen Wang Dynamics on Zd'. Together they form a unique fingerprint.

Cite this