epiDAMIK 5.0: The 5th International Workshop on Epidemiology meets Data Mining and Knowledge Discovery

Bijaya Adhikari, Amulya Yadav, Sen Pei, Ajitesh Srivastava, Sarah Kefayati, Alexander Rodríguez, Marie Laure Charpignon, Anil Vullikanti, B. Aditya Prakash

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Similar to previous iterations, the epiDAMIK@KDD workshop is a forum to promote data driven approaches in epidemiology and public health research. Even after the devastating impact of COVID-19 pandemic, data driven approaches are not as widely studied in epidemiology, as they are in other spaces. We aim to promote and raise the profile of the emerging research area of data-driven and computational epidemiology, and create a venue for presenting state-of-the-art and in-progress results-in particular, results that would otherwise be difficult to present at a major data mining conference, including lessons learnt in the 'trenches'. The current COVID-19 pandemic has only showcased the urgency and importance of this area. Our target audience consists of data mining and machine learning researchers from both academia and industry who are interested in epidemiological and public-health applications of their work, and practitioners from the areas of mathematical epidemiology and public health. Homepage: https://epidamik.github.io/.

Original languageEnglish (US)
Title of host publicationKDD 2022 - Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages4850-4851
Number of pages2
ISBN (Electronic)9781450393850
DOIs
StatePublished - Aug 14 2022
Event28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022 - Washington, United States
Duration: Aug 14 2022Aug 18 2022

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022
Country/TerritoryUnited States
CityWashington
Period8/14/228/18/22

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'epiDAMIK 5.0: The 5th International Workshop on Epidemiology meets Data Mining and Knowledge Discovery'. Together they form a unique fingerprint.

Cite this