Equilibria of an Epidemic Game with Piecewise Linear Social Distancing Cost

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Around the world, infectious disease epidemics continue to threaten people's health. When epidemics strike, we often respond by changing our behaviors to reduce our risk of infection. This response is sometimes called "social distancing." Since behavior changes can be costly, we would like to know the optimal social distancing behavior. But the benefits of changes in behavior depend on the course of the epidemic, which itself depends on our behaviors. Differential population game theory provides a method for resolving this circular dependence. Here, I present the analysis of a special case of the differential SIR epidemic population game with social distancing when the relative infection rate is linear, but bounded below by zero. Equilibrium solutions are constructed in closed-form for an open-ended epidemic. Constructions are also provided for epidemics that are stopped by the deployment of a vaccination that becomes available a fixed-time after the start of the epidemic. This can be used to anticipate a window of opportunity during which mass vaccination can significantly reduce the cost of an epidemic.

Original languageEnglish (US)
Pages (from-to)1961-1984
Number of pages24
JournalBulletin of Mathematical Biology
Issue number10
StatePublished - Oct 2013

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • Immunology
  • General Mathematics
  • General Biochemistry, Genetics and Molecular Biology
  • General Environmental Science
  • Pharmacology
  • General Agricultural and Biological Sciences
  • Computational Theory and Mathematics


Dive into the research topics of 'Equilibria of an Epidemic Game with Piecewise Linear Social Distancing Cost'. Together they form a unique fingerprint.

Cite this