Abstract
Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative Lp-spaces, 1 < p <1, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative Lp-spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these results to noncommutative fully symmetric Banach spaces with the Fatou property and nontrivial Boyd indices, in particular, to noncommutative Lorentz spaces Lp;q. Norm convergence of ergodic averages in noncommutative fully symmetric Banach spaces is also studied.
Original language | English (US) |
---|---|
Pages (from-to) | 177-195 |
Number of pages | 19 |
Journal | Studia Mathematica |
Volume | 228 |
Issue number | 2 |
DOIs | |
State | Published - 2015 |
All Science Journal Classification (ASJC) codes
- General Mathematics