TY - JOUR
T1 - Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication
AU - Meyer, Aviva S.
AU - Blandino, Maureen
AU - Spratt, Thomas E.
PY - 2004/8/6
Y1 - 2004/8/6
N2 - Interactions between the minor groove of the DNA and DNA polymerases appear to play a major role in the catalysis and fidelity of DNA replication. In particular, Arg668 of Escherichia coli DNA polymerase I (Klenow fragment) makes a critical contact with the N-3-position of guanine at the primer terminus. We investigated the interaction between Arg668 and the ring oxygen of the incoming deoxynucleotide triphosphate (dNTP) using a combination of site-specific mutagenesis of the protein and atomic substitution of the DNA and dNTP. Hydrogen bonds from Arg668 were probed with the site-specific mutant R668A. Hydrogen bonds from the DNA were probed with oligodeoxynucleotides containing either guanine or 3-deazaguanine (3DG) at the primer terminus. Hydrogen bonds from the incoming dNTP were probed with (1′R,3′R,4′R)-1-[3-hydroxy-4-(triphosphorylmethyl) cyclopent-1-yl]uracil (dcUTP), an analog of dUTP in which the ring oxygen of the deoxyribose moiety was replaced by a methylene group. We found that the pre-steady-state parameter kpol was decreased 1,600 to 2,000-fold with each of the single substitutions. When the substitutions were combined, there was no additional decrease (R668A and 3DG), a 5-fold decrease (3DG and dcUTP), and a 50-fold decrease (R668A and dcUTP) in kpol. These results are consistent with a hydrogen-bonding fork from Arg668 to the primer terminus and incoming dNTP. These interactions may play an important role in fidelity as well as catalysis of DNA replication.
AB - Interactions between the minor groove of the DNA and DNA polymerases appear to play a major role in the catalysis and fidelity of DNA replication. In particular, Arg668 of Escherichia coli DNA polymerase I (Klenow fragment) makes a critical contact with the N-3-position of guanine at the primer terminus. We investigated the interaction between Arg668 and the ring oxygen of the incoming deoxynucleotide triphosphate (dNTP) using a combination of site-specific mutagenesis of the protein and atomic substitution of the DNA and dNTP. Hydrogen bonds from Arg668 were probed with the site-specific mutant R668A. Hydrogen bonds from the DNA were probed with oligodeoxynucleotides containing either guanine or 3-deazaguanine (3DG) at the primer terminus. Hydrogen bonds from the incoming dNTP were probed with (1′R,3′R,4′R)-1-[3-hydroxy-4-(triphosphorylmethyl) cyclopent-1-yl]uracil (dcUTP), an analog of dUTP in which the ring oxygen of the deoxyribose moiety was replaced by a methylene group. We found that the pre-steady-state parameter kpol was decreased 1,600 to 2,000-fold with each of the single substitutions. When the substitutions were combined, there was no additional decrease (R668A and 3DG), a 5-fold decrease (3DG and dcUTP), and a 50-fold decrease (R668A and dcUTP) in kpol. These results are consistent with a hydrogen-bonding fork from Arg668 to the primer terminus and incoming dNTP. These interactions may play an important role in fidelity as well as catalysis of DNA replication.
UR - http://www.scopus.com/inward/record.url?scp=4043150758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4043150758&partnerID=8YFLogxK
U2 - 10.1074/jbc.C400232200
DO - 10.1074/jbc.C400232200
M3 - Article
C2 - 15210707
AN - SCOPUS:4043150758
SN - 0021-9258
VL - 279
SP - 33043
EP - 33046
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 32
ER -