Estuarine Dissolved Organic Carbon Flux From Space: With Application to Chesapeake and Delaware Bays

Sergio R. Signorini, Antonio Mannino, Marjorie A.M. Friedrichs, Pierre St-Laurent, John Wilkin, Aboozar Tabatabai, Raymond G. Najjar, Eileen E. Hofmann, Fei Da, Hanqin Tian, Yuanzhi Yao

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


This study uses a neural network model trained with in situ data, combined with satellite data and hydrodynamic model products, to compute the daily estuarine export of dissolved organic carbon (DOC) at the mouths of Chesapeake Bay (CB) and Delaware Bay (DB) from 2007 to 2011. Both bays show large flux variability with highest fluxes in spring and lowest in fall as well as interannual flux variability (0.18 and 0.27 Tg C/year in 2008 and 2010 for CB; 0.04 and 0.09 Tg C/year in 2008 and 2011 for DB). Based on previous estimates of total organic carbon (TOCexp) exported by all Mid-Atlantic Bight estuaries (1.2 Tg C/year), the DOC export (CB + DB) of 0.3 Tg C/year estimated here corresponds to 25% of the TOCexp. Spatial and temporal covariations of velocity and DOC concentration provide contributions to the flux, with larger spatial influence. Differences in the discharge of fresh water into the bays (74 billion m3/year for CB and 21 billion m3/year for DB) and their geomorphologies are major drivers of the differences in DOC fluxes for these two systems. Terrestrial DOC inputs are similar to the export of DOC at the bay mouths at annual and longer time scales but diverge significantly at shorter time scales (days to months). Future efforts will expand to the Mid-Atlantic Bight and Gulf of Maine, and its major rivers and estuaries, in combination with coupled terrestrial-estuarine-ocean biogeochemical models that include effects of climate change, such as warming and CO2 increase.

Original languageEnglish (US)
Pages (from-to)3755-3778
Number of pages24
JournalJournal of Geophysical Research: Oceans
Issue number6
StatePublished - Jun 2019

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences (miscellaneous)
  • Geochemistry and Petrology
  • Geophysics
  • Oceanography
  • Space and Planetary Science


Dive into the research topics of 'Estuarine Dissolved Organic Carbon Flux From Space: With Application to Chesapeake and Delaware Bays'. Together they form a unique fingerprint.

Cite this