TY - GEN
T1 - Ethanol fermentation by Saccharomyces cerevisiae from potato waste hydrolysate in biofilm reactors
AU - Izmirlioglu, Gulten
AU - Demirci, Ali
PY - 2016
Y1 - 2016
N2 - Bioethanol is a renewable energy source as an alternative to fossil fuels. Bioethanol is produced from starchy biomass in the U.S. such as corn. However, a cheaper non-food value source is needed. In this context, wastes of industrial potato processing plant were utilized as carbon source for ethanol production. On the other hand, to reduce the cost of ethanol and improve the effectiveness of the process, cell immobilization was employed. Plastic composite supports (PCS) are solid supports that were used to stimulate biofilm formation in bioreactor (a.k.a. biofilm reactor) during microbial production of value-added products. Therefore, in this study, PCS were employed to promote the cell population and biofilm formation in the reactor. Response surface methodology was used to evaluate the various growth conditions, pH, temperature, and agitation, for enhanced ethanol production in biofilm reactors. The optimum conditions were found to be 4.2 pH, 34 °C, and 100 rpm agitation. An optimum ethanol concentration of 37.05 g/L ethanol yield, giving a 92.08% theoretical yield was achieved. The results indicated that biofilm reactors can enhance the ethanol fermentation from industrial potato wastes.
AB - Bioethanol is a renewable energy source as an alternative to fossil fuels. Bioethanol is produced from starchy biomass in the U.S. such as corn. However, a cheaper non-food value source is needed. In this context, wastes of industrial potato processing plant were utilized as carbon source for ethanol production. On the other hand, to reduce the cost of ethanol and improve the effectiveness of the process, cell immobilization was employed. Plastic composite supports (PCS) are solid supports that were used to stimulate biofilm formation in bioreactor (a.k.a. biofilm reactor) during microbial production of value-added products. Therefore, in this study, PCS were employed to promote the cell population and biofilm formation in the reactor. Response surface methodology was used to evaluate the various growth conditions, pH, temperature, and agitation, for enhanced ethanol production in biofilm reactors. The optimum conditions were found to be 4.2 pH, 34 °C, and 100 rpm agitation. An optimum ethanol concentration of 37.05 g/L ethanol yield, giving a 92.08% theoretical yield was achieved. The results indicated that biofilm reactors can enhance the ethanol fermentation from industrial potato wastes.
UR - http://www.scopus.com/inward/record.url?scp=85009067881&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009067881&partnerID=8YFLogxK
U2 - 10.13031/aim.20162456273
DO - 10.13031/aim.20162456273
M3 - Conference contribution
AN - SCOPUS:85009067881
T3 - 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016
BT - 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016
PB - American Society of Agricultural and Biological Engineers
T2 - 2016 ASABE Annual International Meeting
Y2 - 17 July 2016 through 20 July 2016
ER -