TY - JOUR
T1 - Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation
AU - Singh, Chingakham Ranjit
AU - Curtis, Cynthia
AU - Yamamoto, Yasufumi
AU - Hall, Nathan S.
AU - Kruse, Dustin S.
AU - He, Hui
AU - Hannig, Ernest M.
AU - Asano, Katsura
PY - 2005/7
Y1 - 2005/7
N2 - The integrity of eukaryotic translation initiation factor (eIF) interactions in ribosomal preinitiation complexes is critical for the proper regulation of GCN4 mRNA translation in response to amino acid availability. Increased phosphorylation of eIF2 under amino acid starvation conditions leads to a corresponding increase in GCN4 mRNA translation. The carboxyl-terminal domain (CTD) of eIF5 (eIF5-CTD) has been identified as a potential nucleation site for preinitiation complex assembly. To further characterize eIF5 and delineate its role in GCN4 translational control, we isolated mutations leading to temperature sensitivity (Ts- phenotype) targeted at TIF5, the structural gene encoding eIF5 in yeast (Saccharomyces cerevisiae). Nine single point mutations were isolated, in addition to an allele in which the last 15 amino acids were deleted. The nine point mutations clustered in the eIF5-CTD, which contains two conserved aromatic/acidic boxes. Six of the point mutations derepressed GCN4 translation independent of eIF2 phosphorylation (Gcd - phenotype) at a permissive temperature, directly implicating eIF5-CTD in the eIF2/GTP/Met-tRNAiMet ternary complex binding process required for GCN4 translational control. In addition, stronger restriction of eIF5-CTD function at an elevated temperature led to failure to derepress GCN4 translation (Gcn- phenotype) in all of the mutants, most likely due to leaky scanning of the first upstream open reading frame of GCN4 mRNA. This latter result directly implicates eIF5-CTD in the process of accurate scanning for, or recognition of, AUG codons. Taken together, our results indicate that eIF5-CTD plays a critical role in both the assembly of the 43S complex and the postassembly process in the 48S complex, likely during the scanning process.
AB - The integrity of eukaryotic translation initiation factor (eIF) interactions in ribosomal preinitiation complexes is critical for the proper regulation of GCN4 mRNA translation in response to amino acid availability. Increased phosphorylation of eIF2 under amino acid starvation conditions leads to a corresponding increase in GCN4 mRNA translation. The carboxyl-terminal domain (CTD) of eIF5 (eIF5-CTD) has been identified as a potential nucleation site for preinitiation complex assembly. To further characterize eIF5 and delineate its role in GCN4 translational control, we isolated mutations leading to temperature sensitivity (Ts- phenotype) targeted at TIF5, the structural gene encoding eIF5 in yeast (Saccharomyces cerevisiae). Nine single point mutations were isolated, in addition to an allele in which the last 15 amino acids were deleted. The nine point mutations clustered in the eIF5-CTD, which contains two conserved aromatic/acidic boxes. Six of the point mutations derepressed GCN4 translation independent of eIF2 phosphorylation (Gcd - phenotype) at a permissive temperature, directly implicating eIF5-CTD in the eIF2/GTP/Met-tRNAiMet ternary complex binding process required for GCN4 translational control. In addition, stronger restriction of eIF5-CTD function at an elevated temperature led to failure to derepress GCN4 translation (Gcn- phenotype) in all of the mutants, most likely due to leaky scanning of the first upstream open reading frame of GCN4 mRNA. This latter result directly implicates eIF5-CTD in the process of accurate scanning for, or recognition of, AUG codons. Taken together, our results indicate that eIF5-CTD plays a critical role in both the assembly of the 43S complex and the postassembly process in the 48S complex, likely during the scanning process.
UR - http://www.scopus.com/inward/record.url?scp=20744451862&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=20744451862&partnerID=8YFLogxK
U2 - 10.1128/MCB.25.13.5480-5491.2005
DO - 10.1128/MCB.25.13.5480-5491.2005
M3 - Article
C2 - 15964804
AN - SCOPUS:20744451862
SN - 0270-7306
VL - 25
SP - 5480
EP - 5491
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 13
ER -