Evaluating Arctic warming mechanisms in CMIP5 models

Christian L.E. Franzke, Sukyoung Lee, Steven B. Feldstein

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

Original languageEnglish (US)
Pages (from-to)3247-3260
Number of pages14
JournalClimate Dynamics
Volume48
Issue number9-10
DOIs
StatePublished - May 1 2017

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Evaluating Arctic warming mechanisms in CMIP5 models'. Together they form a unique fingerprint.

Cite this