TY - JOUR
T1 - Evaluating electronic cigarette cytotoxicity and inflammatory responses in vitro
AU - Sinha, Indu
AU - Goel, Reema
AU - Bitzer, Zachary T.
AU - Trushin, Neil
AU - Liao, Jason
AU - Sinha, Raghu
N1 - Publisher Copyright:
© 2022 Sinha I. et al.
PY - 2022/5
Y1 - 2022/5
N2 - INTRODUCTION Cigarette smoking poses many health risks and can cause chronic obstructive pulmonary disease (COPD), cardiovascular disease, cancer of the lung and other organs. Smokers can substantially reduce their risks of these diseases by quitting, but nicotine addiction makes this difficult. Alternatives, such as electronic cigarettes (e-cigarettes), may provide a similar dose of nicotine, but expose users to fewer toxic chemicals than traditional cigarettes and may still be harmful especially for dual users, therefore, we sought to develop bioassays that can assess the potential toxicity and inflammatory response induced by e-cigarette liquids (e-liquids) with and without flavors. METHODS E-liquids with varying nicotine content and flavors were aerosolized through growth media and exposed to human bronchial epithelial cell line (BEAS-2B) and human monocyte-macrophage cell line (THP-1) in vitro. Cytotoxicity in response to e-cigarette aerosols was measured by MTT assay in BEAS-2B cells and inflammatory response was measured by TNF-a, IL-6, IL-8, and MCP-1 released from THP-1 cells. In addition, the oxidative stress marker, REDD1, and impact on phagocytosis, was assessed following exposure of BEAS-2B and THP-1 derived macrophages, respectively. Cigarette smoke extract was used as a positive control with known cytotoxicity and impairment of inflammatory response. RESULTS E-cigarette aerosols induced moderate cellular toxicity in bronchial epithelial cells. Our data also show that low nicotine levels are less damaging to the bronchial epithelial cells, and flavors in e-liquids influence the combined inflammatory response markers, phagocytosis, and REDD1 when examined in vitro. CONCLUSIONS Our in vitro bioassays can be utilized to effectively measure flavor and nicotine-induced effects of e-cigarettes on combined inflammatory response and cytotoxicity in human macrophages and human bronchial epithelial cells, respectively.
AB - INTRODUCTION Cigarette smoking poses many health risks and can cause chronic obstructive pulmonary disease (COPD), cardiovascular disease, cancer of the lung and other organs. Smokers can substantially reduce their risks of these diseases by quitting, but nicotine addiction makes this difficult. Alternatives, such as electronic cigarettes (e-cigarettes), may provide a similar dose of nicotine, but expose users to fewer toxic chemicals than traditional cigarettes and may still be harmful especially for dual users, therefore, we sought to develop bioassays that can assess the potential toxicity and inflammatory response induced by e-cigarette liquids (e-liquids) with and without flavors. METHODS E-liquids with varying nicotine content and flavors were aerosolized through growth media and exposed to human bronchial epithelial cell line (BEAS-2B) and human monocyte-macrophage cell line (THP-1) in vitro. Cytotoxicity in response to e-cigarette aerosols was measured by MTT assay in BEAS-2B cells and inflammatory response was measured by TNF-a, IL-6, IL-8, and MCP-1 released from THP-1 cells. In addition, the oxidative stress marker, REDD1, and impact on phagocytosis, was assessed following exposure of BEAS-2B and THP-1 derived macrophages, respectively. Cigarette smoke extract was used as a positive control with known cytotoxicity and impairment of inflammatory response. RESULTS E-cigarette aerosols induced moderate cellular toxicity in bronchial epithelial cells. Our data also show that low nicotine levels are less damaging to the bronchial epithelial cells, and flavors in e-liquids influence the combined inflammatory response markers, phagocytosis, and REDD1 when examined in vitro. CONCLUSIONS Our in vitro bioassays can be utilized to effectively measure flavor and nicotine-induced effects of e-cigarettes on combined inflammatory response and cytotoxicity in human macrophages and human bronchial epithelial cells, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85138830883&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138830883&partnerID=8YFLogxK
U2 - 10.18332/tid/147200
DO - 10.18332/tid/147200
M3 - Article
C2 - 35611070
AN - SCOPUS:85138830883
SN - 1617-9625
VL - 20
JO - Tobacco Induced Diseases
JF - Tobacco Induced Diseases
IS - 5
M1 - 45
ER -