Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy

Alireza Akhavan, Farshad Rajabipour

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Cracking can significantly accelerate mass transport in concrete and as such, impact its durability. This paper is aimed at quantifying the effect of saturated cracks on ion diffusion. Electrical conductivity, measured by electrical impedance spectroscopy (EIS), was used to characterize the diffusion coefficient of fiber-reinforced cement paste disks that contained one or two through-thickness cracks. Crack widths in the range 20-100 μm were generated by controlled indirect tension test. Crack profiles were digitized and quantified by image analysis to determine crack volume fraction and average crack width. Crack connectivity (e.g., inverse of tortuosity) was calculated from the conductivity results measured by EIS. The results suggest that the diffusion coefficient of cracked samples is strongly and linearly related to the crack volume fraction; but is not directly dependent on crack width. Crack tortuosity does reduce the ion diffusion through cracks, but its impact is not very significant. Overall, the most important parameter governing ion diffusion in saturated cracked concrete is the volume fraction of cracks. Theoretical justifications of these observations are also provided.

Original languageEnglish (US)
Pages (from-to)697-708
Number of pages12
JournalMaterials and Structures/Materiaux et Constructions
Volume46
Issue number5
DOIs
StatePublished - May 2013

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • General Materials Science
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy'. Together they form a unique fingerprint.

Cite this