Evaluating the effects of transient purge flow on stator-rotor seal performance

Reid A. Berdanier, Eric T. DeShong, Karen A. Thole

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As modern engine designs target higher efficiencies through increased turbine inlet temperatures, critical turbine components are at increased risk of damage from conditions exceeding material melting temperatures. In particular, improperly designed underplatform hardware components are susceptible to damage when hot main gas path flow is ingested into the stator-rotor cavity. While all turbines inherently experience transients during operation, a majority of turbine tests have been executed using steady operating conditions, and routine transient events are not well understood. To address this need, the present study utilizes a continuous-duration, one-stage test turbine operating with true-scale engine hardware and seal geometries at engine-representative flow conditions. The nature of the continuous-duration facility uniquely supports direct assessment of transient events through its ability to transition between steady-state operating conditions. Specifically, the effects of a transient purge flow were investigated in this study to identify general trends for transient events in a full-scale engine. Results from multiple measurement techniques in the wheelspace region show an interdependence of transient purge flow with a thermal lag of the underplatform hardware. Through experiments conducted at different coolant-to-main gas path temperature ratios, the use of pressure measurements as an indicator of fully-purged behavior was introduced, and a thermally-driven influence on rim seal performance was quantified.

Original languageEnglish (US)
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858561
DOIs
StatePublished - 2019
EventASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019 - Phoenix, United States
Duration: Jun 17 2019Jun 21 2019

Publication series

NameProceedings of the ASME Turbo Expo
Volume2B-2019

Conference

ConferenceASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Country/TerritoryUnited States
CityPhoenix
Period6/17/196/21/19

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Evaluating the effects of transient purge flow on stator-rotor seal performance'. Together they form a unique fingerprint.

Cite this