TY - GEN
T1 - Evaluating the influence of rotor-casing eccentricity on turbine efficiency including time-resolved flow field measurements
AU - Eric, T. De Shong
AU - Shawn Siroka, Siroka
AU - Reid, A. Berdanier
AU - Karen, A. Thole
N1 - Publisher Copyright:
© 2021 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2021
Y1 - 2021
N2 - The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates nonaxisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotorcasing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.
AB - The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates nonaxisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotorcasing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.
UR - http://www.scopus.com/inward/record.url?scp=85115836407&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115836407&partnerID=8YFLogxK
U2 - 10.1115/GT2021-59112
DO - 10.1115/GT2021-59112
M3 - Conference contribution
AN - SCOPUS:85115836407
T3 - Proceedings of the ASME Turbo Expo
BT - Turbomachinery - Axial Flow Turbine Aerodynamics; Deposition, Erosion, Fouling, and Icing
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021
Y2 - 7 June 2021 through 11 June 2021
ER -