Evaluating water quality benefits of manureshed management in the Susquehanna River Basin

Arghajeet Saha, Gourab K. Saha, Raj Cibin, Sheri Spiegal, Peter J.A. Kleinman, Tamie L. Veith, Charles M. White, Patrick J. Drohan, Teferi Tsegaye

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Manureshed management guides the sustainable use of manure resources by matching areas of crop demand (nutrient sinks) with areas generating livestock manure (nutrient sources). A better understanding of the impacts of manureshed management on water quality within sensitive watersheds is needed. We quantified the potential water quality benefits of manureshed-oriented management through scenario-based analyses in the Susquehanna River Basin (SRB) using the Soil and Water Assessment Tool. Five manureshed management scenarios were developed and compared with a baseline “business-as-usual” scenario. The baseline assumes manure is less transportable, which means some locations have manure application in excess of crop demand. The “watershed nutrient balance” scenarios assume excess manure from surplus locations is transportable and that manure is applied around the SRB based on crop nutrient demand. The “watershed nutrient balance avoiding runoff prone areas” scenarios assume manure is transportable but not applied in vulnerable landscapes of the SRB. Each scenario was evaluated under two application rates considering crop nitrogen demand (N-based) and phosphorus demand (P-based). Phosphorus-based manureshed management was more effective in water quality improvements than N-based management. Phosphorus-based nutrient balance scenarios simulated 3 and 25% reduction in total N (TN) and total P (TP), respectively, from the baseline scenario at the watershed outlet. The N- and P-based scenarios avoiding runoff prone areas simulated 3 and 6% reduction in TN loss and 4 and 25.2% reduction in TP loss, respectively, from the baseline. Overall, the manureshed management scenarios were more effective in improving the quality of local streams in livestock-intensive regions than at the watershed outlet.

Original languageEnglish (US)
Pages (from-to)328-340
Number of pages13
JournalJournal of Environmental Quality
Issue number2
StatePublished - Mar 1 2023

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Evaluating water quality benefits of manureshed management in the Susquehanna River Basin'. Together they form a unique fingerprint.

Cite this