Evaluation of Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its Responses to Seasonality of Land Cover, Subsidence, and Advection

Camilo Rey-Sanchez, Sonia Wharton, Jordi Vilà-Guerau de Arellano, Kyaw Tha Paw U, Kyle S. Hemes, Jose D. Fuentes, Jessica Osuna, Daphne Szutu, João Vinicius Ribeiro, Joseph Verfaillie, Dennis Baldocchi

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

In this study, we evaluated the effect of land cover, atmospheric subsidence, and advection on the annual dynamics of atmospheric boundary layer (ABL) height from two contrasting sites. The first site is the Walker Branch forest, a deciduous forest of temperate climate, complex topography, and cloudy summers. The second site is the Sacramento-San Joaquin River Delta, a site of Mediterranean climate, flat terrain on a local scale, and clear summers. After testing a new algorithm to calculate ABL heights from 915 MHz radar wind profilers, we evaluated a hierarchy of three slab models to recreate the diurnal and annual patterns of ABL growth. We found that the lower ABL heights in the Delta, particularly during late summer, are driven by the combined effects of increased atmospheric subsidence and marine air advection. In both sites, the annual pattern of ABL height was strongly correlated to total daily incoming radiation, and in the Delta, the annual pattern of ABL height closely followed the seasonal patterns of sensible heat flux from a mosaic of different land covers. A land composite of latent and sensible heat fluxes obtained through a meso-network of eddy covariance measurements and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission resulted in higher model skill, thus showing that land cover heterogeneity is an important driver of ABL growth. Model simulations show that in the Delta, restoring agricultural land to wetlands with large open water areas could result in a reduction of ABL height during those months with low subsidence and advection.

Original languageEnglish (US)
Article numbere2020JD033775
JournalJournal of Geophysical Research: Atmospheres
Volume126
Issue number7
DOIs
StatePublished - Apr 16 2021

All Science Journal Classification (ASJC) codes

  • Atmospheric Science
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Evaluation of Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its Responses to Seasonality of Land Cover, Subsidence, and Advection'. Together they form a unique fingerprint.

Cite this