TY - JOUR
T1 - Evaluation of Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its Responses to Seasonality of Land Cover, Subsidence, and Advection
AU - Rey-Sanchez, Camilo
AU - Wharton, Sonia
AU - Vilà-Guerau de Arellano, Jordi
AU - Paw U, Kyaw Tha
AU - Hemes, Kyle S.
AU - Fuentes, Jose D.
AU - Osuna, Jessica
AU - Szutu, Daphne
AU - Ribeiro, João Vinicius
AU - Verfaillie, Joseph
AU - Baldocchi, Dennis
N1 - Funding Information:
This work was supported by the California Department of Water Resources (DWR) through a contract from the California Department of Fish and Wildlife and the United States Department of Agriculture (grant #2011-67003-30371). Funding for the AmeriFlux core sites was provided by the U.S. Department of Energy’s Office of Science (AmeriFlux contract #7079856). The authors also acknowledge support from NASA’s ECOSTRESS mission, sponsor 005101 NASA National Aeronautics and Space Administration Miscellaneous Centers awarded to PI D. Baldocchi. D. Baldocchi was supported by University of California Agricultural Experiment Station, McIntire-Stennis Program and from NSF and NCAR for the Walker Branch measurements. Partial support for K. T. Paw U was from the United States Department of Agriculture National Institute of Food and Agriculture, Hatch project CA-D-LAW-4526H and Hatch/Multistate project CA-D-LAW-7214-RR. Many thanks to Dr. Nancy Kiang for help with interpretation of the ACE analysis and to Dr. Laura Bianco for providing estimates of ABL height for the validation of the new algorithm and for her advice along the process. The authors also thank Dr. Ken Davis for his work on the data sets the authors used from Walker Branch.
Funding Information:
This work was supported by the California Department of Water Resources (DWR) through a contract from the California Department of Fish and Wildlife and the United States Department of Agriculture (grant #2011‐67003‐30371). Funding for the AmeriFlux core sites was provided by the U.S. Department of Energy’s Office of Science (AmeriFlux contract #7079856). The authors also acknowledge support from NASA’s ECOSTRESS mission, sponsor 005101 NASA National Aeronautics and Space Administration Miscellaneous Centers awarded to PI D. Baldocchi. D. Baldocchi was supported by University of California Agricultural Experiment Station, McIntire‐Stennis Program and from NSF and NCAR for the Walker Branch measurements. Partial support for K. T. Paw U was from the United States Department of Agriculture National Institute of Food and Agriculture, Hatch project CA‐D‐LAW‐4526H and Hatch/Multistate project CA‐D‐LAW‐7214‐RR. Many thanks to Dr. Nancy Kiang for help with interpretation of the ACE analysis and to Dr. Laura Bianco for providing estimates of ABL height for the validation of the new algorithm and for her advice along the process. The authors also thank Dr. Ken Davis for his work on the data sets the authors used from Walker Branch.
Publisher Copyright:
© 2021. American Geophysical Union. All Rights Reserved.
PY - 2021/4/16
Y1 - 2021/4/16
N2 - In this study, we evaluated the effect of land cover, atmospheric subsidence, and advection on the annual dynamics of atmospheric boundary layer (ABL) height from two contrasting sites. The first site is the Walker Branch forest, a deciduous forest of temperate climate, complex topography, and cloudy summers. The second site is the Sacramento-San Joaquin River Delta, a site of Mediterranean climate, flat terrain on a local scale, and clear summers. After testing a new algorithm to calculate ABL heights from 915 MHz radar wind profilers, we evaluated a hierarchy of three slab models to recreate the diurnal and annual patterns of ABL growth. We found that the lower ABL heights in the Delta, particularly during late summer, are driven by the combined effects of increased atmospheric subsidence and marine air advection. In both sites, the annual pattern of ABL height was strongly correlated to total daily incoming radiation, and in the Delta, the annual pattern of ABL height closely followed the seasonal patterns of sensible heat flux from a mosaic of different land covers. A land composite of latent and sensible heat fluxes obtained through a meso-network of eddy covariance measurements and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission resulted in higher model skill, thus showing that land cover heterogeneity is an important driver of ABL growth. Model simulations show that in the Delta, restoring agricultural land to wetlands with large open water areas could result in a reduction of ABL height during those months with low subsidence and advection.
AB - In this study, we evaluated the effect of land cover, atmospheric subsidence, and advection on the annual dynamics of atmospheric boundary layer (ABL) height from two contrasting sites. The first site is the Walker Branch forest, a deciduous forest of temperate climate, complex topography, and cloudy summers. The second site is the Sacramento-San Joaquin River Delta, a site of Mediterranean climate, flat terrain on a local scale, and clear summers. After testing a new algorithm to calculate ABL heights from 915 MHz radar wind profilers, we evaluated a hierarchy of three slab models to recreate the diurnal and annual patterns of ABL growth. We found that the lower ABL heights in the Delta, particularly during late summer, are driven by the combined effects of increased atmospheric subsidence and marine air advection. In both sites, the annual pattern of ABL height was strongly correlated to total daily incoming radiation, and in the Delta, the annual pattern of ABL height closely followed the seasonal patterns of sensible heat flux from a mosaic of different land covers. A land composite of latent and sensible heat fluxes obtained through a meso-network of eddy covariance measurements and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission resulted in higher model skill, thus showing that land cover heterogeneity is an important driver of ABL growth. Model simulations show that in the Delta, restoring agricultural land to wetlands with large open water areas could result in a reduction of ABL height during those months with low subsidence and advection.
UR - http://www.scopus.com/inward/record.url?scp=85104248185&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104248185&partnerID=8YFLogxK
U2 - 10.1029/2020JD033775
DO - 10.1029/2020JD033775
M3 - Article
AN - SCOPUS:85104248185
SN - 2169-897X
VL - 126
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 7
M1 - e2020JD033775
ER -