TY - JOUR
T1 - Evaluation of Hemodynamic Performance of a Combined ECLS and CRRT Circuit in Seven Positions With a Simulated Neonatal Patient
AU - Profeta, Elizabeth
AU - Shank, Kaitlyn
AU - Wang, Shigang
AU - O'Connor, Christian
AU - Kunselman, Allen
AU - Woitas, Karl
AU - Myers, John
AU - Undar, Akif
N1 - Publisher Copyright:
© 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
PY - 2018/2
Y1 - 2018/2
N2 - As it is common for patients treated with extracorporeal life support (ECLS) to subsequently require continuous renal replacement therapy (CRRT), and neonatal patients encounter limitations due to lack of access points, inclusion of CRRT in the ECLS circuit could provide advanced treatment for this population. The objective of this study was to evaluate an alternative neonatal ECLS circuit containing either a Maquet RotaFlow centrifugal pump or Maquet HL20 roller pump with one of seven configurations of CRRT using the Prismaflex 2000 System. All ECLS circuit setups included a Quadrox-iD Pediatric diffusion membrane oxygenator, a Better Bladder, an 8-Fr arterial cannula, a 10-Fr venous cannula, and 6 feet of ¼-inch diameter arterial and venous tubing. The circuit was primed with lactated Ringer's solution and packed human red blood cells resulting in a total priming volume of 700 mL for both the circuit and the 3-kg pseudopatient. Hemodynamic data were recorded for ECLS flow rates of 200, 400, and 600 mL/min and a CRRT flow rate of 50 mL/min. When a centrifugal pump is used, the hemodynamic performance of any combined ECLS and CRRT circuit was not significantly different than that of the circuit without CRRT, thus any configuration could potentially be used. However, introduction of CRRT to a circuit containing a roller pump does affect performance properties for some CRRT positions. The circuits with CRRT positions B and G demonstrated decreased total hemodynamic energy (THE) levels at the post-arterial cannula site, while positions D and E demonstrated increased post-arterial cannula THE levels compared to the circuit without CRRT. CRRT positions A, C, and F did not have significant changes with respect to pre-arterial cannula flow and THE levels, compared to the circuit without CRRT. Considering hemodynamic performance, for neonatal combined extracorporeal membrane oxygenation (ECMO) and CRRT circuits with both blood pumps, we recommend the use of CRRT position A due to its hemodynamic similarities to the ECMO circuit without CRRT.
AB - As it is common for patients treated with extracorporeal life support (ECLS) to subsequently require continuous renal replacement therapy (CRRT), and neonatal patients encounter limitations due to lack of access points, inclusion of CRRT in the ECLS circuit could provide advanced treatment for this population. The objective of this study was to evaluate an alternative neonatal ECLS circuit containing either a Maquet RotaFlow centrifugal pump or Maquet HL20 roller pump with one of seven configurations of CRRT using the Prismaflex 2000 System. All ECLS circuit setups included a Quadrox-iD Pediatric diffusion membrane oxygenator, a Better Bladder, an 8-Fr arterial cannula, a 10-Fr venous cannula, and 6 feet of ¼-inch diameter arterial and venous tubing. The circuit was primed with lactated Ringer's solution and packed human red blood cells resulting in a total priming volume of 700 mL for both the circuit and the 3-kg pseudopatient. Hemodynamic data were recorded for ECLS flow rates of 200, 400, and 600 mL/min and a CRRT flow rate of 50 mL/min. When a centrifugal pump is used, the hemodynamic performance of any combined ECLS and CRRT circuit was not significantly different than that of the circuit without CRRT, thus any configuration could potentially be used. However, introduction of CRRT to a circuit containing a roller pump does affect performance properties for some CRRT positions. The circuits with CRRT positions B and G demonstrated decreased total hemodynamic energy (THE) levels at the post-arterial cannula site, while positions D and E demonstrated increased post-arterial cannula THE levels compared to the circuit without CRRT. CRRT positions A, C, and F did not have significant changes with respect to pre-arterial cannula flow and THE levels, compared to the circuit without CRRT. Considering hemodynamic performance, for neonatal combined extracorporeal membrane oxygenation (ECMO) and CRRT circuits with both blood pumps, we recommend the use of CRRT position A due to its hemodynamic similarities to the ECMO circuit without CRRT.
UR - http://www.scopus.com/inward/record.url?scp=85021402426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85021402426&partnerID=8YFLogxK
U2 - 10.1111/aor.12907
DO - 10.1111/aor.12907
M3 - Article
C2 - 28621839
AN - SCOPUS:85021402426
SN - 0160-564X
VL - 42
SP - 155
EP - 165
JO - Artificial organs
JF - Artificial organs
IS - 2
ER -