TY - JOUR
T1 - Evaluation of microphysics schemes in tropical cyclones using polarimetric radar observations
T2 - Convective precipitation in an outer rainband
AU - Wu, Dan
AU - Zhang, Fuqing
AU - Chen, Xiaomin
AU - Ryzhkov, Alexander
AU - Zhao, Kun
AU - Kumjian, Matthew R.
AU - Chen, Xingchao
AU - Chan, Pak Wai
N1 - Publisher Copyright:
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
PY - 2021
Y1 - 2021
N2 - Cloud microphysics significantly impact tropical cyclone precipitation. A prior polarimetric radar observational study by the authors revealed the ice-phase microphysical processes as the dominant microphysics mechanisms responsible for the heavy precipitation in the outer rainband of Typhoon Nida (2016). To assess the model performance regarding microphysics, three double-moment microphysics schemes (i.e., Thompson, Morrison, and WDM6) are evaluated by performing a set of simulations of the same case. While these simulations capture the outer rainband's general structure, microphysics in the outer rainbands are strikingly different from the observations. This discrepancy is primarily attributed to different microphysics parameterizations in these schemes, rather than the differences in large-scale environments due to cloud-environment interactions. An interesting finding in this study is that the surface rain rate or liquid water content is inversely proportional to the simulated mean raindrop sizes. The mass-weighted raindrop diameters are overestimated in the Morrison and Thompson schemes and underestimated in the WDM6 scheme, while the former two schemes produce lower liquid water content than WDM6. Compared with the observed ice water content based on a new polarimetric radar retrieval method, the ice water content above the environmental 08C level in all simulations is highly underestimated, especially at heights above 12 km MSL where large concentrations of small ice particles are typically prevalent. This finding suggests that the improper treatment of ice-phase processes is potentially an important error source in these microphysics schemes. Another error source identified in the WDM6 scheme is overactive warm-rain processes that produce excessive concentrations of smaller raindrops.
AB - Cloud microphysics significantly impact tropical cyclone precipitation. A prior polarimetric radar observational study by the authors revealed the ice-phase microphysical processes as the dominant microphysics mechanisms responsible for the heavy precipitation in the outer rainband of Typhoon Nida (2016). To assess the model performance regarding microphysics, three double-moment microphysics schemes (i.e., Thompson, Morrison, and WDM6) are evaluated by performing a set of simulations of the same case. While these simulations capture the outer rainband's general structure, microphysics in the outer rainbands are strikingly different from the observations. This discrepancy is primarily attributed to different microphysics parameterizations in these schemes, rather than the differences in large-scale environments due to cloud-environment interactions. An interesting finding in this study is that the surface rain rate or liquid water content is inversely proportional to the simulated mean raindrop sizes. The mass-weighted raindrop diameters are overestimated in the Morrison and Thompson schemes and underestimated in the WDM6 scheme, while the former two schemes produce lower liquid water content than WDM6. Compared with the observed ice water content based on a new polarimetric radar retrieval method, the ice water content above the environmental 08C level in all simulations is highly underestimated, especially at heights above 12 km MSL where large concentrations of small ice particles are typically prevalent. This finding suggests that the improper treatment of ice-phase processes is potentially an important error source in these microphysics schemes. Another error source identified in the WDM6 scheme is overactive warm-rain processes that produce excessive concentrations of smaller raindrops.
UR - https://www.scopus.com/pages/publications/85104806499
UR - https://www.scopus.com/inward/citedby.url?scp=85104806499&partnerID=8YFLogxK
U2 - 10.1175/MWR-D-19-0378.1
DO - 10.1175/MWR-D-19-0378.1
M3 - Article
AN - SCOPUS:85104806499
SN - 0027-0644
VL - 149
SP - 1055
EP - 1068
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 4
ER -