Evidence of Coulomb blockade behavior in a quasi-zero-dimensional quantum well on TiO2 surface

Vincent Meunier, M. H. Pan, F. Moreau, K. T. Park, E. W. Plummer

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Line defects on the surface of rutile TiO2(110) form in pairs separated by 1.2 nm creating a quantum well. The well is effectively closed by the presence of two charged structures at both ends separated by a distance in the 10-20 nm range. As expected for quantum confinement a long period oscillatory feature of the local density of states is observed and attributed to the formation of discrete quantum states inside the system. It is at first glance surprising that the lowest energy quantum state of the well can be observed at room temperature. The properties of the quantum state cannot be explained in an independent-electron, band-like theory. Instead, electron-electron correlation must be included to give a satisfactory picture of the spatial distribution of the charge density. Theory predicts charging energies of 1.30 eV and 1.14 eV for quantum well lengths of 14 nm and 16 nm, respectively, in good agreement with a classical calculation and the size dependence of the capacitance. This observation opens up the possibility of experimentally imaging the transition from a Coulomb blockade localized in a zero-dimensional system to an independent-particle or band-like behavior in an extended one-dimensional system.

Original languageEnglish (US)
Pages (from-to)14968-14972
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume107
Issue number34
DOIs
StatePublished - Aug 24 2010

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Evidence of Coulomb blockade behavior in a quasi-zero-dimensional quantum well on TiO2 surface'. Together they form a unique fingerprint.

Cite this