Evolution of antibiotic resistance by human and bacterial niche construction

Maciej F. Boni, Marcus W. Feldman

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Antibiotic treatment by humans generates strong viability selection for antibiotic-resistant bacterial strains. The frequency of host antibiotic use often determines the strength of this selection, and changing patterns of antibiotic use can generate many types of behaviors in the population dynamics of resistant and sensitive bacterial populations. In this paper, we present a simple model of hosts dimorphic for their tendency to use/avoid antibiotics and bacterial pathogens dimorphic in their resistance/sensitivity to antibiotic treatment. When a constant fraction of hosts uses antibiotics, the two bacterial strain populations can coexist unless host use-frequency is above a critical value; this critical value is derived as the ratio of the fitness cost of resistance to the fitness cost of undergoing treatment. When strain frequencies can affect host behavior, the dynamics may be analyzed in the light of niche construction. We consider three models underlying changing host behavior: conformism, the avoidance of long infections, and adherence to the advice of public health officials. In the latter two, we find that the pathogen can have quite a strong effect on host behavior. In particular, if antibiotic use is discouraged when resistance levels are high, we observe a classic niche-construction phenomenon of maintaining strain polymorphism even in parameter regions where it would not be expected.

Original languageEnglish (US)
Pages (from-to)477-491
Number of pages15
JournalEvolution
Volume59
Issue number3
DOIs
StatePublished - Mar 2005

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Evolution of antibiotic resistance by human and bacterial niche construction'. Together they form a unique fingerprint.

Cite this