Abstract
To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman-Kittel-Kasuya-Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.
Original language | English (US) |
---|---|
Pages (from-to) | 2483-2489 |
Number of pages | 7 |
Journal | Nano letters |
Volume | 23 |
Issue number | 7 |
DOIs | |
State | Published - Apr 12 2023 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering