Evolution of interfacial microstructure during resistance spot welding of CU and al with NI-P coating

Nannan Chen, Hongliang Wang, Jingjing Li, Vic Liu, James Schroth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Dissimilar materials of copper (Cu) to aluminum (Al) with nickel-phosphorus (Ni-P) coatings were joined using resistance spot welding. The Ni-P coatings were electroless plated on the Al surfaces to eliminate the formation of brittle Cu-Al intermetallic compounds (IMCs) at the faying interface between Cu and Al. Three welding schedules with various heat input were employed to produce different interfacial microstructure. The evolution of interfaces in terms of phase constitution, elemental distribution and defects (gaps and voids) was characterized and the formation mechanisms were elucidated. During the welding process, the bonding between Cu and Ni-P forms through solid-state diffusion, while the faster diffusion rate of Cu relative to Ni and P atoms promotes the generation of sub-micron voids. As the heat input increases, gaps at the Cu/Ni-P interface diminish accompanied by increase of sub-micron voids. A moderate schedule helps to remove the gaps and inhibits the void formation. An Al3Ni layer and nanovoids were found around the interface of Ni-P/Al. The increased heat input decreases the grain size of Al3Ni at the interface by eutectic remelting and increases the nanovoids by enhanced nanoscale Kirkendall effect.

Original languageEnglish (US)
Title of host publicationManufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791885079
DOIs
StatePublished - 2021
EventASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021 - Virtual, Online
Duration: Jun 21 2021Jun 25 2021

Publication series

NameProceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021
Volume2

Conference

ConferenceASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021
CityVirtual, Online
Period6/21/216/25/21

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Evolution of interfacial microstructure during resistance spot welding of CU and al with NI-P coating'. Together they form a unique fingerprint.

Cite this