TY - GEN
T1 - Evolution of interfacial microstructure during resistance spot welding of CU and al with NI-P coating
AU - Chen, Nannan
AU - Wang, Hongliang
AU - Li, Jingjing
AU - Liu, Vic
AU - Schroth, James
N1 - Publisher Copyright:
Copyright © 2021 by ASME
PY - 2021
Y1 - 2021
N2 - Dissimilar materials of copper (Cu) to aluminum (Al) with nickel-phosphorus (Ni-P) coatings were joined using resistance spot welding. The Ni-P coatings were electroless plated on the Al surfaces to eliminate the formation of brittle Cu-Al intermetallic compounds (IMCs) at the faying interface between Cu and Al. Three welding schedules with various heat input were employed to produce different interfacial microstructure. The evolution of interfaces in terms of phase constitution, elemental distribution and defects (gaps and voids) was characterized and the formation mechanisms were elucidated. During the welding process, the bonding between Cu and Ni-P forms through solid-state diffusion, while the faster diffusion rate of Cu relative to Ni and P atoms promotes the generation of sub-micron voids. As the heat input increases, gaps at the Cu/Ni-P interface diminish accompanied by increase of sub-micron voids. A moderate schedule helps to remove the gaps and inhibits the void formation. An Al3Ni layer and nanovoids were found around the interface of Ni-P/Al. The increased heat input decreases the grain size of Al3Ni at the interface by eutectic remelting and increases the nanovoids by enhanced nanoscale Kirkendall effect.
AB - Dissimilar materials of copper (Cu) to aluminum (Al) with nickel-phosphorus (Ni-P) coatings were joined using resistance spot welding. The Ni-P coatings were electroless plated on the Al surfaces to eliminate the formation of brittle Cu-Al intermetallic compounds (IMCs) at the faying interface between Cu and Al. Three welding schedules with various heat input were employed to produce different interfacial microstructure. The evolution of interfaces in terms of phase constitution, elemental distribution and defects (gaps and voids) was characterized and the formation mechanisms were elucidated. During the welding process, the bonding between Cu and Ni-P forms through solid-state diffusion, while the faster diffusion rate of Cu relative to Ni and P atoms promotes the generation of sub-micron voids. As the heat input increases, gaps at the Cu/Ni-P interface diminish accompanied by increase of sub-micron voids. A moderate schedule helps to remove the gaps and inhibits the void formation. An Al3Ni layer and nanovoids were found around the interface of Ni-P/Al. The increased heat input decreases the grain size of Al3Ni at the interface by eutectic remelting and increases the nanovoids by enhanced nanoscale Kirkendall effect.
UR - http://www.scopus.com/inward/record.url?scp=85112524876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85112524876&partnerID=8YFLogxK
U2 - 10.1115/MSEC2021-60759
DO - 10.1115/MSEC2021-60759
M3 - Conference contribution
AN - SCOPUS:85112524876
T3 - Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021
BT - Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability
PB - American Society of Mechanical Engineers
T2 - ASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021
Y2 - 21 June 2021 through 25 June 2021
ER -