TY - JOUR
T1 - Evolutionary history of histone demethylase families
T2 - Distinct evolutionary patterns suggest functional divergence
AU - Zhou, Xiaofan
AU - Ma, Hong
N1 - Funding Information:
This work was supported by funds from the Department of Biology, the Eberly School of Sciences, and the Huck Institutes of the Life Sciences, the Pennsylvania State University. H.M. was also partially supported by the School of Life Sciences, Fudan University.
PY - 2008
Y1 - 2008
N2 - Background. Histone methylation can dramatically affect chromatin structure and gene expression and was considered irreversible until recent discoveries of two families of histone demethylases, the KDM1 (previously LSD1) and JmjC domain-containing proteins. These two types of proteins have different functional domains and distinct substrate specificities. Although more and more KDM1 and JmjC proteins have been shown to have histone demethylase activity, our knowledge about their evolution history is limited. Results. We performed systematic phylogenetic analysis of these histone demethylase families and uncovered different evolutionary patterns. The KDM1 genes have been maintained with a stable low copy number in most organisms except for a few duplication events in flowering plants. In contrast, multiple genes for JmjC proteins with distinct domain architectures were present before the split of major eukaryotic groups, and experienced subsequent birth-and-death evolution. In addition, distinct evolutionary patterns can also be observed between animal and plant histone demethylases in both families. Furthermore, our results showed that some JmjC subfamilies contain only animal genes with specific demethylase activities, but do not have plant members. Conclusion. Our study improves the understanding about the evolutionary history of KDM1 and JmjC genes and provides valuable insights into their functions. Based on the phylogenetic relationship, we discussed possible histone demethylase activities for several plant JmjC proteins. Finally, we proposed that the observed differences in evolutionary pattern imply functional divergence between animal and plant histone demethylases.
AB - Background. Histone methylation can dramatically affect chromatin structure and gene expression and was considered irreversible until recent discoveries of two families of histone demethylases, the KDM1 (previously LSD1) and JmjC domain-containing proteins. These two types of proteins have different functional domains and distinct substrate specificities. Although more and more KDM1 and JmjC proteins have been shown to have histone demethylase activity, our knowledge about their evolution history is limited. Results. We performed systematic phylogenetic analysis of these histone demethylase families and uncovered different evolutionary patterns. The KDM1 genes have been maintained with a stable low copy number in most organisms except for a few duplication events in flowering plants. In contrast, multiple genes for JmjC proteins with distinct domain architectures were present before the split of major eukaryotic groups, and experienced subsequent birth-and-death evolution. In addition, distinct evolutionary patterns can also be observed between animal and plant histone demethylases in both families. Furthermore, our results showed that some JmjC subfamilies contain only animal genes with specific demethylase activities, but do not have plant members. Conclusion. Our study improves the understanding about the evolutionary history of KDM1 and JmjC genes and provides valuable insights into their functions. Based on the phylogenetic relationship, we discussed possible histone demethylase activities for several plant JmjC proteins. Finally, we proposed that the observed differences in evolutionary pattern imply functional divergence between animal and plant histone demethylases.
UR - http://www.scopus.com/inward/record.url?scp=55349106954&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55349106954&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-8-294
DO - 10.1186/1471-2148-8-294
M3 - Article
C2 - 18950507
AN - SCOPUS:55349106954
SN - 1471-2148
VL - 8
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 294
ER -