Exact Privacy Guarantees for Markov Chain Implementations of the Exponential Mechanism with Artificial Atoms

Jeremy Seeman, Matthew Reimherr, Aleksandra Slavković

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Implementations of the exponential mechanism in differential privacy often require sampling from intractable distributions. When approximate procedures like Markov chain Monte Carlo (MCMC) are used, the end result incurs costs to both privacy and accuracy. Existing work has examined these effects asymptotically, but implementable finite sample results are needed in practice so that users can specify privacy budgets in advance and implement samplers with exact privacy guarantees. In this paper, we use tools from ergodic theory and perfect simulation to design exact finite runtime sampling algorithms for the exponential mechanism by introducing an intermediate modified target distribution using artificial atoms. We propose an additional modification of this sampling algorithm that maintains its ǫ-DP guarantee and has improved runtime at the cost of some utility. We then compare these methods in scenarios where we can explicitly calculate a δ cost (as in (ǫ, δ)-DP) incurred when using standard MCMC techniques. Much as there is a well known trade-off between privacy and utility, we demonstrate that there is also a trade-off between privacy guarantees and runtime.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages13125-13136
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume16
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Exact Privacy Guarantees for Markov Chain Implementations of the Exponential Mechanism with Artificial Atoms'. Together they form a unique fingerprint.

Cite this