Experimental analysis of vibration and radiated sound power reduction using an array of acoustic black holes

Philip A. Feurtado, Stephen Clarke Conlon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The Acoustic Black Hole (ABH) has been developed in recent years as an effective, passive, and lightweight method for attenuating bending wave vibrations in beams and plates. The acoustic black hole effect utilizes a local change in the plate or beam thickness to reduce the bending wave speed and increase the transverse vibration amplitude. Attaching a viscoelastic damping layer to the ABH results in effective energy dissipation and vibration reduction. Surface averaged mobility and radiated sound power measurements were performed on an aluminum plate containing an array of 20 two-dimensional ABHs with damping layers and compared to a similar uniform plate. Detailed laser vibrometer scans of an ABH cell were also performed to analyze the vibratory characteristics of the individual ABHs and compared with mode shapes calculated using Finite Elements. The diameter of the damping layer was reduced in successive steps to experimentally demonstrate the effect of damping layer distribution on the ABH performance. The experimental analysis demonstrated the importance of low order ABH modes in reducing the vibration and radiated sound power of plates with embedded ABHs. The results will be useful for designing the low frequency performance of future ABH systems and describing ABH performance in terms of design parameters.

Original languageEnglish (US)
Title of host publicationASME 2015 Noise Control and Acoustics Division Conference at InterNoise 2015, NCAD 2015
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791856819
DOIs
StatePublished - Jan 1 2015
EventASME 2015 Noise Control and Acoustics Division Conference at InterNoise 2015, NCAD 2015 - San Francisco, United States
Duration: Aug 9 2015Aug 12 2015

Publication series

NameAmerican Society of Mechanical Engineers, Noise Control and Acoustics Division (Publication) NCAD
Volume2015-January

Other

OtherASME 2015 Noise Control and Acoustics Division Conference at InterNoise 2015, NCAD 2015
Country/TerritoryUnited States
CitySan Francisco
Period8/9/158/12/15

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Experimental analysis of vibration and radiated sound power reduction using an array of acoustic black holes'. Together they form a unique fingerprint.

Cite this