TY - JOUR
T1 - Experimental and analytical study of a loop heat pipe at a positive elevation using neutron radiography
AU - Chuang, Po Ya Abel
AU - Cimbala, John M.
AU - Brenizer, Jack S.
PY - 2014/3
Y1 - 2014/3
N2 - An experimental and analytical study has been conducted of a loop heat pipe's steady state operating conditions at a positive elevation, which refers to when the condenser is higher than the evaporator. A unique trend of the steady state operating temperature as a function of evaporator heat load at a positive elevation was observed in the experimental data. A gravity-assisted operating theory was proposed and explained in detail. In addition, the proposed hypothesis was validated by neutron radiography, a non-destructive visualization tool. When the LHP is operated at a positive elevation, it can operate in the capillary-controlled mode, which means the system is driven by pressure gain from both surface tension and liquid head, or in the gravity-controlled mode, which means the system is driven only by the pressure gain from the liquid head. A pressure-temperature diagram illustrating the thermodynamic states of the circulating fluid was presented when the system is operating in a gravity-controlled mode. Experimental temperature data were presented for a loop heat pipe operating at 25.4, 76.2, and 127.0 mm positive elevations. Lastly, predicting results from an analytical model with the newly added features at a positive elevation were compared with the experimental results obtained at a 76.2 mm positive elevation. The model prediction and the experimental data agree well, which means the operating mechanisms were understood and captured in the model. This is the first study of a loop heat pipe focusing on a positive elevation, which unveils the unique temperature trend at low heat load operating conditions.
AB - An experimental and analytical study has been conducted of a loop heat pipe's steady state operating conditions at a positive elevation, which refers to when the condenser is higher than the evaporator. A unique trend of the steady state operating temperature as a function of evaporator heat load at a positive elevation was observed in the experimental data. A gravity-assisted operating theory was proposed and explained in detail. In addition, the proposed hypothesis was validated by neutron radiography, a non-destructive visualization tool. When the LHP is operated at a positive elevation, it can operate in the capillary-controlled mode, which means the system is driven by pressure gain from both surface tension and liquid head, or in the gravity-controlled mode, which means the system is driven only by the pressure gain from the liquid head. A pressure-temperature diagram illustrating the thermodynamic states of the circulating fluid was presented when the system is operating in a gravity-controlled mode. Experimental temperature data were presented for a loop heat pipe operating at 25.4, 76.2, and 127.0 mm positive elevations. Lastly, predicting results from an analytical model with the newly added features at a positive elevation were compared with the experimental results obtained at a 76.2 mm positive elevation. The model prediction and the experimental data agree well, which means the operating mechanisms were understood and captured in the model. This is the first study of a loop heat pipe focusing on a positive elevation, which unveils the unique temperature trend at low heat load operating conditions.
UR - http://www.scopus.com/inward/record.url?scp=84889076222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889076222&partnerID=8YFLogxK
U2 - 10.1016/j.ijthermalsci.2013.10.010
DO - 10.1016/j.ijthermalsci.2013.10.010
M3 - Article
AN - SCOPUS:84889076222
SN - 1290-0729
VL - 77
SP - 84
EP - 95
JO - International Journal of Thermal Sciences
JF - International Journal of Thermal Sciences
ER -