Abstract
The thermodynamic properties and phase equilibria of the Cu-Hf binary system with five intermetallic compounds were studied by experiments, first-principles calculations and CALPHAD modeling. The experimental investigations included differential thermal analysis, scanning electron microscopy, energy dispersive X-ray microanalysis and micro-X-ray diffraction focusing on the 30-60 at.% Hf composition range to determine the invariant reaction temperatures. Cu10Hf7 was confirmed to melt incongruently. The enthalpies of formation of all five binary Cu-Hf compounds were predicted through first-principles calculations. The atomic configuration of one of the compounds, Cu51Hf14, was postulated through systematic first-principles calculations with 65 atoms instead of 68 atoms, denoted by hp68 in the literature. The thermodynamic description of the Cu-Hf binary system was then obtained from the new experimental data and first-principles calculations.
Original language | English (US) |
---|---|
Pages (from-to) | 660-669 |
Number of pages | 10 |
Journal | Acta Materialia |
Volume | 61 |
Issue number | 2 |
DOIs | |
State | Published - Jan 2013 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys