Abstract
To improve the constraints of kesterite Cu2ZnSnS4 (CZTS) solar cell, such as undesirable band alignment at p-n interfaces, bandgap tuning, and fast carrier recombination, cadmium (Cd) is introduced into CZTS nanocrystals forming Cu2Zn1-xCdxSnS4 through cost-effective solution-based method without postannealing or sulfurization treatments. A synergetic experimental-theoretical approach was employed to characterize and assess the optoelectronic properties of Cu2Zn1-xCdxSnS4 materials. Tunable direct band gap energy ranging from 1.51 to 1.03 eV with high absorption coefficient was demonstrated for the Cu2Zn1-xCdxSnS4 nanocrystals with changing Zn/Cd ratio. Such bandgap engineering in Cu2Zn1-xCdxSnS4 helps in effective carrier separation at interface. Ultrafast spectroscopy reveals a longer lifetime and efficient separation of photoexcited charge carriers in Cu2CdSnS4 (CCTS) nanocrystals compared to that of CZTS. We found that there exists a type-II staggered band alignment at the CZTS (CCTS)/CdS interface, from cyclic voltammetric (CV) measurements, corroborated by first-principles density functional theory (DFT) calculations, predicting smaller conduction band offset (CBO) at the CCTS/CdS interface as compared to the CZTS/CdS interface. These results point toward efficient separation of photoexcited carriers across the p-n junction in the ultrafast time scale and highlight a route to improve device performances.
Original language | English (US) |
---|---|
Pages (from-to) | 5153-5162 |
Number of pages | 10 |
Journal | ACS Applied Energy Materials |
Volume | 3 |
Issue number | 6 |
DOIs | |
State | Published - Jun 22 2020 |
All Science Journal Classification (ASJC) codes
- Chemical Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Electrochemistry
- Materials Chemistry
- Electrical and Electronic Engineering