TY - JOUR
T1 - Exploring the allergenic potential of sesame oleosins
T2 - Isolation and bioinformatics analysis
AU - He, Shudong
AU - Gao, Kuan
AU - Pan, Tiange
AU - Wu, Yanni
AU - Di, Dakai
AU - Li, Xingjiang
AU - Sun, Hanju
AU - Zhang, Yi
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11
Y1 - 2024/11
N2 - This study examined two oleosins of 17 kDa and 15 kDa isolated from Yuzhi white sesame seeds through oil body extraction. The allergens were identified as oleosin H1 (Ses i 4) and oleosin L (Ses i 5) using SDS-PAGE, dot blot analysis, and LC-MS/MS. PCR analysis revealed high sequence homology for the oleosin proteins in the sesame seeds. Utilizing AlphaFold2, bioinformatics tools, and protein-protein docking, the structure and function of these oleosins were analyzed. Ten potential B cell epitope peptides were predicted and mapped onto the α-helix and random coil-dominated oleosome membrane conformation. IgE binding simulations identified key epitopes, B3 (FLTSGAFGL) and B4 (KRGVQEGTLY) for oleosin H1, and B8 (GGFGVAALSV) and B9 (DQLESAKTKL) for oleosin L. Mutational analysis highlighted Glu135, Phe102, Tyr128, Tyr139, Gly136, and Gly132 in oleosin H1, and Leu120, Lys119, and Leu113 in oleosin L as critical residues for binding stability, providing insights into the sensitization mechanism of these epitopes. The integration of bioinformatics and immunoinformatics in this study has contributed to a deeper understanding of the allergy properties of sesame oleosins.
AB - This study examined two oleosins of 17 kDa and 15 kDa isolated from Yuzhi white sesame seeds through oil body extraction. The allergens were identified as oleosin H1 (Ses i 4) and oleosin L (Ses i 5) using SDS-PAGE, dot blot analysis, and LC-MS/MS. PCR analysis revealed high sequence homology for the oleosin proteins in the sesame seeds. Utilizing AlphaFold2, bioinformatics tools, and protein-protein docking, the structure and function of these oleosins were analyzed. Ten potential B cell epitope peptides were predicted and mapped onto the α-helix and random coil-dominated oleosome membrane conformation. IgE binding simulations identified key epitopes, B3 (FLTSGAFGL) and B4 (KRGVQEGTLY) for oleosin H1, and B8 (GGFGVAALSV) and B9 (DQLESAKTKL) for oleosin L. Mutational analysis highlighted Glu135, Phe102, Tyr128, Tyr139, Gly136, and Gly132 in oleosin H1, and Leu120, Lys119, and Leu113 in oleosin L as critical residues for binding stability, providing insights into the sensitization mechanism of these epitopes. The integration of bioinformatics and immunoinformatics in this study has contributed to a deeper understanding of the allergy properties of sesame oleosins.
UR - http://www.scopus.com/inward/record.url?scp=85205281434&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205281434&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.135997
DO - 10.1016/j.ijbiomac.2024.135997
M3 - Article
C2 - 39343253
AN - SCOPUS:85205281434
SN - 0141-8130
VL - 280
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 135997
ER -