Exploring the Potential of Large Language Models in Generating Code-Tracing Questions for Introductory Programming Courses

Aysa Xuemo Fan, Ranran Haoran Zhang, Luc Paquette, Rui Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we explore the application of large language models (LLMs) for generating code-tracing questions in introductory programming courses. We designed targeted prompts for GPT4, guiding it to generate code-tracing questions based on code snippets and descriptions. We established a set of human evaluation metrics to assess the quality of questions produced by the model compared to those created by human experts. Our analysis provides insights into the capabilities and potential of LLMs in generating diverse code-tracing questions. Additionally, we present a unique dataset of human and LLM-generated tracing questions, serving as a valuable resource for both the education and NLP research communities. This work contributes to the ongoing dialogue on the potential uses of LLMs in educational settings.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages7406-7421
Number of pages16
ISBN (Electronic)9798891760615
StatePublished - 2023
Event2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, Singapore
Duration: Dec 6 2023Dec 10 2023

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2023

Conference

Conference2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Country/TerritorySingapore
CitySingapore
Period12/6/2312/10/23

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Language and Linguistics
  • Linguistics and Language

Cite this