Exploring the roles of standard rectifying circuits on the performance of a nonlinear piezoelectric energy harvester

Lihua Tang, Yue Han, James Hand, Ryan L. Harne

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

To enhance the energy conversion performance of piezoelectric vibration energy harvesters, such structures have been recently designed to leverage bandwidth-enhancing nonlinear dynamics. While key findings have been made, the majority of researchers have evaluated the opportunities when the harvesters are connected to pure resistive loads (AC interface). The alternating voltage generated by such energy harvesting systems cannot be directly utilized to power conventional electronics. Rectifying circuits are required to interface the device and electronic load but few efforts have considered how a standard rectifying DC interface circuit (DC interface) connected to a nonlinear piezoelectric energy harvester influences the system performance. The aim of this research is to begin exploring this critical feature of the nonlinear energy harvesting system. A nonlinear, monostable piezoelectric energy harvester (MPEH) is fabricated and evaluated to determine the generated power and useful operating bandwidth when connected to a DC interface. The nonlinearity is introduced into the harvester design by tuneable magnetic force. An equivalent circuit model of the MPEH is implemented with a user-defined nonlinear behavioral voltage source representative of the magnetic interaction. The model is validated comparing the open circuit voltage from circuit simulation and experiment. The practical energy harvesting capability of the MPEH connected to the AC and DC interface circuits are then investigated and compared, focusing on the influence of the varying load on the nonlinear dynamics and subsequent bandwidth and harvested power.

Original languageEnglish (US)
Title of host publicationActive and Passive Smart Structures and Integrated Systems 2016
EditorsGyuhae Park
PublisherSPIE
ISBN (Electronic)9781510600409
DOIs
StatePublished - 2016
EventActive and Passive Smart Structures and Integrated Systems 2016 - Las Vegas, United States
Duration: Mar 21 2016Mar 24 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9799
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceActive and Passive Smart Structures and Integrated Systems 2016
Country/TerritoryUnited States
CityLas Vegas
Period3/21/163/24/16

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Exploring the roles of standard rectifying circuits on the performance of a nonlinear piezoelectric energy harvester'. Together they form a unique fingerprint.

Cite this