TY - JOUR
T1 - Exploring variability of orientation and aging effects in material properties of multi-material jetting parts
AU - Bass, Lindsey
AU - Meisel, Nicholas Alexander
AU - Williams, Christopher B.
N1 - Publisher Copyright:
© 2015 The authors.
PY - 2016
Y1 - 2016
N2 - Purpose - Understanding how material jetting process parameters affect material properties can inform design and print orientation when manufacturing end-use components. This study aims to explore the robustness of material properties in material jetted components to variations in processing environment and build orientation. Design/methodology/approach - The authors characterized the properties of six different material gradients produced from preset "digital material" mixes of polypropylene-like (VeroWhitePlus) and elastomer-like (TangoBlackPlus) materials. Tensile stress, modulus of elasticity and elongation at break were analyzed for each material printed at three different build orientations. In a separate ten-week study, the authors investigated the effects of aging in different lighting conditions on material properties. Findings - Specimens fabricated with their longest dimension along the direction of the print head travel (X-axis) tended to have the largest tensile strength, but trends in elastic modulus and elongation at break varied between the rigid and flexible photopolymers. The aging study showed that the ultimate tensile stress of VeroWhitePlus parts increased and the elongation decreased over time. Material properties were not significantly altered by lighting conditions. Research limitations/implications - Many tensile specimens failed at the neck region, especially for the more elastomeric parts. It is hypothesized that this is due to the material jetting process approximating curves with a pixelated droplet arrangement, instead of curved contour as seen in other additive manufacturing processes. A new tensile specimen design that performs more consistently with elastomer-like materials should be considered. The aging component of this study is focused solely on polypropylene-like (VeroWhitePlus) material; additional research into the effects of aging on multiple composite materials is needed. Originality/value - The study provides the first known description of orientation effects on the mechanical behavior of photopolymers containing varied concentrations of elastomeric (TangoBlackPlus) material. The aging study presents the first findings on how time affects parts made via material jetting.
AB - Purpose - Understanding how material jetting process parameters affect material properties can inform design and print orientation when manufacturing end-use components. This study aims to explore the robustness of material properties in material jetted components to variations in processing environment and build orientation. Design/methodology/approach - The authors characterized the properties of six different material gradients produced from preset "digital material" mixes of polypropylene-like (VeroWhitePlus) and elastomer-like (TangoBlackPlus) materials. Tensile stress, modulus of elasticity and elongation at break were analyzed for each material printed at three different build orientations. In a separate ten-week study, the authors investigated the effects of aging in different lighting conditions on material properties. Findings - Specimens fabricated with their longest dimension along the direction of the print head travel (X-axis) tended to have the largest tensile strength, but trends in elastic modulus and elongation at break varied between the rigid and flexible photopolymers. The aging study showed that the ultimate tensile stress of VeroWhitePlus parts increased and the elongation decreased over time. Material properties were not significantly altered by lighting conditions. Research limitations/implications - Many tensile specimens failed at the neck region, especially for the more elastomeric parts. It is hypothesized that this is due to the material jetting process approximating curves with a pixelated droplet arrangement, instead of curved contour as seen in other additive manufacturing processes. A new tensile specimen design that performs more consistently with elastomer-like materials should be considered. The aging component of this study is focused solely on polypropylene-like (VeroWhitePlus) material; additional research into the effects of aging on multiple composite materials is needed. Originality/value - The study provides the first known description of orientation effects on the mechanical behavior of photopolymers containing varied concentrations of elastomeric (TangoBlackPlus) material. The aging study presents the first findings on how time affects parts made via material jetting.
UR - http://www.scopus.com/inward/record.url?scp=84988509426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988509426&partnerID=8YFLogxK
U2 - 10.1108/RPJ-11-2015-0169
DO - 10.1108/RPJ-11-2015-0169
M3 - Article
AN - SCOPUS:84988509426
SN - 1355-2546
VL - 22
SP - 826
EP - 834
JO - Rapid Prototyping Journal
JF - Rapid Prototyping Journal
IS - 5
ER -