Extended discrete-time LTR synthesis of delayed control systems

Jenny H. Shen, Asok Ray

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


This paper addresses compensation of dealys within a multi-input-multi-output discrete-time feedback loop for application to real-time distributed control systems. The delay compensation algorithm, formulated, in this paper, is an extension of the standard loop transfer recovery (LTR) procedure from one-step prediction to the general case of p-step prediction (p ≥ 1). It is shown that the steady-state minimum-variance filter gain is the H2-minimization solution of the relative error between the target sensitivity matrix and the actual sensitivity matrix for p-step prediction (p ≥ 1). This concept forms the basis for synthesis of robust p-step delay compensators (p > 1). The proposed control synthesis procedure for delay compensation is demonstrated via simulation of the flight control system of an advanced aircraft.

Original languageEnglish (US)
Pages (from-to)431-438
Number of pages8
Issue number2
StatePublished - Mar 1993

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Extended discrete-time LTR synthesis of delayed control systems'. Together they form a unique fingerprint.

Cite this