Abstract
This paper addresses compensation of dealys within a multi-input-multi-output discrete-time feedback loop for application to real-time distributed control systems. The delay compensation algorithm, formulated, in this paper, is an extension of the standard loop transfer recovery (LTR) procedure from one-step prediction to the general case of p-step prediction (p ≥ 1). It is shown that the steady-state minimum-variance filter gain is the H2-minimization solution of the relative error between the target sensitivity matrix and the actual sensitivity matrix for p-step prediction (p ≥ 1). This concept forms the basis for synthesis of robust p-step delay compensators (p > 1). The proposed control synthesis procedure for delay compensation is demonstrated via simulation of the flight control system of an advanced aircraft.
Original language | English (US) |
---|---|
Pages (from-to) | 431-438 |
Number of pages | 8 |
Journal | Automatica |
Volume | 29 |
Issue number | 2 |
DOIs | |
State | Published - Mar 1993 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Electrical and Electronic Engineering