Extended Kalman filtering in burdet coordinates

David Ciliberto, Puneet Singla, Manoranjan Majji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Peculiarities associated with the linear error theory and the Kalman filter implementations associated with a class of nonlinear transformations of mechanical systems of interest in astrodynamics are discussed in the paper. Change of the independent variable using a nonlinear implicit equation transforms the measurement equations appropriately and provides additional conditions associated with the measurement times that are perfectly known. Since regularization process introduces redundant coordinates, linear error theory to explicitly account for the state constraints is developed. The paper then studies the tradeoffs obtained by the linear error propagation in the time updates and the nonlinearity incurred in the measurement update for problems in astrodynamics.

Original languageEnglish (US)
Title of host publicationAAS/AIAA Astrodynamics Specialist Conference, 2018
EditorsPuneet Singla, Ryan M. Weisman, Belinda G. Marchand, Brandon A. Jones
PublisherUnivelt Inc.
Pages2945-2964
Number of pages20
ISBN (Print)9780877036579
StatePublished - 2018
EventAAS/AIAA Astrodynamics Specialist Conference, 2018 - Snowbird, United States
Duration: Aug 19 2018Aug 23 2018

Publication series

NameAdvances in the Astronautical Sciences
Volume167
ISSN (Print)0065-3438

Conference

ConferenceAAS/AIAA Astrodynamics Specialist Conference, 2018
Country/TerritoryUnited States
CitySnowbird
Period8/19/188/23/18

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Extended Kalman filtering in burdet coordinates'. Together they form a unique fingerprint.

Cite this