TY - JOUR
T1 - Extreme γ-Ray Radiation Tolerance of Spectrometer-Grade CsPbBr3 Perovskite Detectors
AU - De Siena, Michael C.
AU - Klepov, Vladislav V.
AU - Stepanoff, Sergei P.
AU - Bayikadi, Khasim Saheb
AU - Pan, Lei
AU - Pandey, Indra R.
AU - Karki, Sujita
AU - Chung, Duck Young
AU - Wolfe, Douglas E.
AU - Kanatzidis, Mercouri G.
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023/9/21
Y1 - 2023/9/21
N2 - The perovskite compound CsPbBr3 has recently been discovered as a promising room-temperature semiconductor radiation detector, offering an inexpensive and easy-to-manufacture alternative to the current benchmark material Cd1−xZnxTe (CZT). The performance of CsPbBr3 sensors is evaluated under harsh conditions, such as high radiation doses often found in industrial settings and extreme radiation in space. Results show minimal degradation in detector performance after exposure to 1 Mrad of Co-60 gamma radiation, with no significant change to energy resolution or hole mobility and lifetime. Additionally, many of the devices are still functional after being exposed to a 10 Mrad dose over 3 days, and those that do not survive can still be refabricated into working detectors. These results suggest that the failure mode in these devices is likely related to the interface between the electrode and material and their reaction, or the electrode itself and not the material itself. Overall, the study suggests that CsPbBr3 has high potential as a reliable and efficient radiation detector in various applications, including those involving extreme fluxes and energies of gamma-ray radiation.
AB - The perovskite compound CsPbBr3 has recently been discovered as a promising room-temperature semiconductor radiation detector, offering an inexpensive and easy-to-manufacture alternative to the current benchmark material Cd1−xZnxTe (CZT). The performance of CsPbBr3 sensors is evaluated under harsh conditions, such as high radiation doses often found in industrial settings and extreme radiation in space. Results show minimal degradation in detector performance after exposure to 1 Mrad of Co-60 gamma radiation, with no significant change to energy resolution or hole mobility and lifetime. Additionally, many of the devices are still functional after being exposed to a 10 Mrad dose over 3 days, and those that do not survive can still be refabricated into working detectors. These results suggest that the failure mode in these devices is likely related to the interface between the electrode and material and their reaction, or the electrode itself and not the material itself. Overall, the study suggests that CsPbBr3 has high potential as a reliable and efficient radiation detector in various applications, including those involving extreme fluxes and energies of gamma-ray radiation.
UR - http://www.scopus.com/inward/record.url?scp=85165612480&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85165612480&partnerID=8YFLogxK
U2 - 10.1002/adma.202303244
DO - 10.1002/adma.202303244
M3 - Article
C2 - 37285797
AN - SCOPUS:85165612480
SN - 0935-9648
VL - 35
JO - Advanced Materials
JF - Advanced Materials
IS - 38
M1 - 2303244
ER -