F-SIOL-310: A Robotic Dataset and Benchmark for Few-Shot Incremental Object Learning

Ali Ayub, Alan R. Wagner

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

Deep learning has achieved remarkable success in object recognition tasks through the availability of large scale datasets like ImageNet. However, deep learning systems suffer from catastrophic forgetting when learning incrementally without replaying old data. For real-world applications, robots also need to incrementally learn new objects. Further, since robots have limited human assistance available, they must learn from only a few examples. However, very few object recognition datasets and benchmarks exist to test incremental learning capability for robotic vision. Further, there is no dataset or benchmark specifically designed for incremental object learning from a few examples. To fill this gap, we present a new dataset termed F-SIOL-310 (Few-Shot Incremental Object Learning) which is specifically captured for testing few-shot incremental object learning capability for robotic vision. We also provide benchmarks and evaluations of 8 incremental learning algorithms on F-SIOL-310 for future comparisons. Our results demonstrate that the few-shot incremental object learning problem for robotic vision is far from being solved.

Original languageEnglish (US)
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13496-13502
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: May 30 2021Jun 5 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period5/30/216/5/21

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence
  • Electrical and Electronic Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'F-SIOL-310: A Robotic Dataset and Benchmark for Few-Shot Incremental Object Learning'. Together they form a unique fingerprint.

Cite this