Fabrication and performance of magneto-active elastomer composite structures

Paris Von Lockette

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

This works discusses the use of magneto-active elastomer (MAE) as an active material for use in origami engineering and other applications where transformation of a composite structure between target shapes is desired. Magneto-active elastomer, as the name implies, consists of magnetic powders dispersed in an elastomer (polymer) fluid which is subsequently cured in the presence of a magnetic field to produce a net remanent magnetization in the cured solid. Having their own internal magnetization, MAE materials are affected by both magnetic forces, due to gradients in local field, as well as magnetic torques resulting from the cross product of the field and the magnetization. In this fashion, patches of MAE material, distributed throughout a non-magnetic elastomeric structure, act as distributed actuators producing deformed shapes. The use of rare-Earth magnets as the magnetic actuation elements is also investigated. The work highlights experimental efforts to develop structures with integrated MAE patches and rare-Earth magnets of varying magnetization orientations using multi-step casting processes and 3D printing techniques. Initial results show success at generating active structures having locally oriented MAE patches and magnets in accordion, water bomb and and Miru fold patterns.

Original languageEnglish (US)
Title of host publicationASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791846148
DOIs
StatePublished - 2014
EventASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 - Newport, United States
Duration: Sep 8 2014Sep 10 2014

Publication series

NameASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Volume1

Other

OtherASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Country/TerritoryUnited States
CityNewport
Period9/8/149/10/14

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Fabrication and performance of magneto-active elastomer composite structures'. Together they form a unique fingerprint.

Cite this