Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink

Kui Zhou, Madhuri Dey, Bugra Ayan, Zhifeng Zhang, Veli Ozbolat, Myoung Hwan Kim, Vladimir Khristov, Ibrahim T. Ozbolat

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Additive manufacturing or three-dimensional (3D) printing technology is increasingly being employed in biochemical as well as clinical applications and more importantly in fabrication of microfluidic devices. However, the microfluidic community mainly relies on photolithography for fabrication of a defined mask, which is both tedious and expensive requiring clean room settings as well as limited to the generation of two-dimensional features. In this work, we 3D printed nanoclay-reinforced Pluronic ink as a sacrificial material, which exhibited shear thinning behavior and superior printability allowing the fabrication of unsupported or overhanging templates of channels with uniform diameter and circular cross-sections. To highlight the potential and effectiveness of the presented approach, we fabricated a human blood vessel-on-a-chip model with curved as well as straight channels. These channels were then lined up with human umbilical vein endothelial cells (HUVECs) and subjected to a dynamic culture for 10 d to explore the effect of shear stress on HUVEC morphology based on the location of HUVECs in the devices. Overall, we presented a highly affordable, practical and useful approach in manufacturing of polydimethylsiloxane-based devices with closed microfluidic channels, which holds great potential for a numerous applications, such as but not limited to organ-on-a-chip, microfluidics, point-of-care devices and drug screening platforms.

Original languageEnglish (US)
Article number045005
JournalBiomedical Materials (Bristol)
Volume16
Issue number4
DOIs
StatePublished - Jul 2021

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink'. Together they form a unique fingerprint.

Cite this