Abstract
A one-dimensional (1D) graphene fiber with a novel structure has been prepared by a heat treatment of rice husk, a natural by-product that contains high amounts of silica. A step-by-step heat treatment of rice husk revealed that (i) carbonization yields porous carbon and silica, (ii) 1D β-SiC nanowires are formed by the carbothermic reduction of silica, (iii) finally 1D graphene fibers are created by silicon sublimation from 1D β-SiC nanowires. Raman spectroscopy and electron microscopy studies revealed that the graphene fiber is composed of a turbostratic multilayer structure. The SiC-derived material exhibits a large crystalline size and turbostratic stacking making each layer as quasi-free-standing graphene, which is confirmed by the 3.9 times higher Raman G′-band intensity over the G-band intensity. Molecular dynamics simulations revealed a high diffusion rate of Si atoms and a volume reduction of the SiC structure at the sublimation temperature. Since the silicon sublimation occurred from multiple points of the SiC nanowire, this led to radially-collapsed fibers and faceted structures with thick-graphitic-layer that are inter-connected (deflated-balloons and inter-connected balloon-like fibers). This facile synthesis route opens up a new avenue to the cost-effective and etching-free production of self-standing graphene for its bulk usage.
Original language | English (US) |
---|---|
Pages (from-to) | 78-88 |
Number of pages | 11 |
Journal | Carbon |
Volume | 142 |
DOIs | |
State | Published - Feb 2019 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Materials Science
Fingerprint
Dive into the research topics of 'Facile 1D graphene fiber synthesis from an agricultural by-product: A silicon-mediated graphenization route'. Together they form a unique fingerprint.Equipment
-
MRI-MCL-TEM-FEI Titan3 G2
Stapleton, J. J. (Manager)
Materials Characterization LabEquipment/facility: Equipment