Factored extended Kalman filter for monocular vision-aided inertial navigation

Daniel Magree, Eric N. Johnson

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


This paper describes a novel visual simultaneous localization and mapping system based on the UD factored extended Kalman filter. A novel method for marginalizing and initializing state variables is presented, allowing for featurestobeadded and removed directlyto and from the covariance factors. An analysis of the number of operations in the marginalization and initialization algorithm are presented. A randomized analysis demonstrates the improvement in numerical stability over the standard and Joseph-form extended Kalman filter by as much as three orders of magnitude. The navigation system is implemented on an 80 kg unmanned aerial vehicle and a 0.5 kg unmanned aerial vehicle, and flight-test and simulation results with a controller in the loop are presented. The flight-test results agree with the simulation results and show a low state error and a consistent error covariance.

Original languageEnglish (US)
Pages (from-to)475-490
Number of pages16
JournalJournal of Aerospace Information Systems
Issue number12
StatePublished - Jan 1 2016

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Factored extended Kalman filter for monocular vision-aided inertial navigation'. Together they form a unique fingerprint.

Cite this