TY - JOUR
T1 - Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335
T2 - I. Regulation of FaRLiP gene expression
AU - Ho, Ming Yang
AU - Gan, Fei
AU - Shen, Gaozhong
AU - Zhao, Chi
AU - Bryant, Donald A.
N1 - Funding Information:
This research was supported by Grant MCB-1021725 from the National Science Foundation to D. A. B. This research was also conducted under the auspices of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the DOE, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035.
Publisher Copyright:
© 2016, Springer Science+Business Media Dordrecht.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Far-red light photoacclimation (FaRLiP) is a mechanism that allows some cyanobacteria to utilize far-red light (FRL) for oxygenic photosynthesis. During FaRLiP, cyanobacteria remodel photosystem (PS) I, PS II, and phycobilisomes while synthesizing Chl d, Chl f, and far-red-absorbing phycobiliproteins, and these changes enable these organisms to use FRL for growth. In this study, a conjugation-based genetic system was developed for Synechococcus sp. PCC 7335. Three antibiotic cassettes were successfully used to generate knockout mutations in genes in Synechococcus sp. PCC 7335, which should allow up to three gene loci to be modified in one strain. This system was used to delete the rfpA, rfpB, and rfpC genes individually, and characterization of the mutants demonstrated that these genes control the expression of the FaRLiP gene cluster in Synechococcus sp. PCC 7335. The mutant strains exhibited some surprising differences from similar mutants in other FaRLiP strains. Notably, mutations in any of the three master transcription regulatory genes led to enhanced synthesis of phycocyanin and PS II. A time-course study showed that acclimation of the photosynthetic apparatus from that produced in white light to that produced in FRL occurs very slowly over a period 12–14 days in this strain and that it is associated with a substantial reduction (~34 %) in the chlorophyll a content of the cells. This study shows that there are differences in the detailed responses of cyanobacteria to growth in FRL in spite of the obvious similarities in the organization and regulation of the FaRLiP gene cluster.
AB - Far-red light photoacclimation (FaRLiP) is a mechanism that allows some cyanobacteria to utilize far-red light (FRL) for oxygenic photosynthesis. During FaRLiP, cyanobacteria remodel photosystem (PS) I, PS II, and phycobilisomes while synthesizing Chl d, Chl f, and far-red-absorbing phycobiliproteins, and these changes enable these organisms to use FRL for growth. In this study, a conjugation-based genetic system was developed for Synechococcus sp. PCC 7335. Three antibiotic cassettes were successfully used to generate knockout mutations in genes in Synechococcus sp. PCC 7335, which should allow up to three gene loci to be modified in one strain. This system was used to delete the rfpA, rfpB, and rfpC genes individually, and characterization of the mutants demonstrated that these genes control the expression of the FaRLiP gene cluster in Synechococcus sp. PCC 7335. The mutant strains exhibited some surprising differences from similar mutants in other FaRLiP strains. Notably, mutations in any of the three master transcription regulatory genes led to enhanced synthesis of phycocyanin and PS II. A time-course study showed that acclimation of the photosynthetic apparatus from that produced in white light to that produced in FRL occurs very slowly over a period 12–14 days in this strain and that it is associated with a substantial reduction (~34 %) in the chlorophyll a content of the cells. This study shows that there are differences in the detailed responses of cyanobacteria to growth in FRL in spite of the obvious similarities in the organization and regulation of the FaRLiP gene cluster.
UR - http://www.scopus.com/inward/record.url?scp=84988442183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988442183&partnerID=8YFLogxK
U2 - 10.1007/s11120-016-0309-z
DO - 10.1007/s11120-016-0309-z
M3 - Article
C2 - 27638320
AN - SCOPUS:84988442183
SN - 0166-8595
VL - 131
SP - 173
EP - 186
JO - Photosynthesis research
JF - Photosynthesis research
IS - 2
ER -