Faster generation of feasible design points

Bernard Yannou, Faysal Moreno, Henri J. Thevenot, Timothy W. Simpson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Design space exploration during conceptual design is an active research field. Most approaches generate a number of feasible design points (complying with the constraints) and apply graphical post-processing to visualize correlations between variables, the Pareto frontier or a preference structure among the design solutions. The generation of feasible design points is often a statistical (Monte Carlo) generation of potential candidates sampled within initial variable domains, followed by a verification of constraint satisfaction, which may become inefficient if the design problem is highly constrained since a majority of candidates that are generated do not belong to the (small) feasible solution space. In this paper, we propose to perform a preliminary analysis with Constraint Programming techniques that are based on interval arithmetic to dramatically prune the solution space before using statistical (Monte Carlo) methods to generate candidates in the design space. This method requires that the constraints are expressed in an analytical form. A case study involving truss design under uncertainty is presented to demonstrate that the computation time for generating a given number of feasible design points is greatly improved using the proposed method. The integration of both techniques provides a flexible mechanism to take successive design refinements into account within a dynamic process of design under uncertainty.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences - DETC2005
Subtitle of host publication31st Design Automation Conference
PublisherAmerican Society of Mechanical Engineers
Pages355-363
Number of pages9
ISBN (Print)079184739X, 9780791847398
DOIs
StatePublished - 2005
EventDETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Long Beach, CA, United States
Duration: Sep 24 2005Sep 28 2005

Publication series

NameProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005
Volume2 A

Other

OtherDETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CityLong Beach, CA
Period9/24/059/28/05

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Faster generation of feasible design points'. Together they form a unique fingerprint.

Cite this