TY - JOUR
T1 - Father loss and child telomere length
AU - Mitchell, Colter
AU - McLanahan, Sara
AU - Schneper, Lisa
AU - Garfinkel, Irv
AU - Brooks-Gunn, Jeanne
AU - Notterman, Daniel
N1 - Publisher Copyright:
© 2017 by the American Academy of Pediatrics.
PY - 2017/8
Y1 - 2017/8
N2 - BACKGROUND AND OBJECTIVES: Father loss during childhood has negative health and behavioral consequences, but the biological consequences are unknown. Our goal was to examine how father loss (because of separation and/or divorce, death, or incarceration) is associated with cellular function as estimated by telomere length. METHODS: Data come from the 9-year follow-up of the Fragile Families and Child Wellbeing Study, a birth cohort study of children in 20 large American cities (N = 2420). Principal measures are as follows: salivary telomere length (sTL), mother reports of father loss, and polymorphisms in genes related to serotonergic and dopaminergic signaling. RESULTS: At 9 years of age, children with father loss have significantly shorter telomeres (14% reduction). Paternal death has the largest association (16%), followed by incarceration (10%), and separation and/or divorce (6%). Changes in income partially mediate these associations (95% mediation for separation and/or divorce, 30% for incarceration, and 25% for death). Effects are 40% greater for boys and 90% greater for children with the most reactive alleles of the serotonin transporter genes when compared with those with the least reactive alleles. No differences were found by age at father loss or a child's race/ethnicity. CONCLUSIONS: Father loss has a significant association with children's sTL, with the death of a father showing the largest effect. Income loss explains most of the association between child sTL and separation and/or divorce but much less of the association with incarceration or death. This underscores the important role of fathers in the care and development of children and supplements evidence of the strong negative effects of parental incarceration.
AB - BACKGROUND AND OBJECTIVES: Father loss during childhood has negative health and behavioral consequences, but the biological consequences are unknown. Our goal was to examine how father loss (because of separation and/or divorce, death, or incarceration) is associated with cellular function as estimated by telomere length. METHODS: Data come from the 9-year follow-up of the Fragile Families and Child Wellbeing Study, a birth cohort study of children in 20 large American cities (N = 2420). Principal measures are as follows: salivary telomere length (sTL), mother reports of father loss, and polymorphisms in genes related to serotonergic and dopaminergic signaling. RESULTS: At 9 years of age, children with father loss have significantly shorter telomeres (14% reduction). Paternal death has the largest association (16%), followed by incarceration (10%), and separation and/or divorce (6%). Changes in income partially mediate these associations (95% mediation for separation and/or divorce, 30% for incarceration, and 25% for death). Effects are 40% greater for boys and 90% greater for children with the most reactive alleles of the serotonin transporter genes when compared with those with the least reactive alleles. No differences were found by age at father loss or a child's race/ethnicity. CONCLUSIONS: Father loss has a significant association with children's sTL, with the death of a father showing the largest effect. Income loss explains most of the association between child sTL and separation and/or divorce but much less of the association with incarceration or death. This underscores the important role of fathers in the care and development of children and supplements evidence of the strong negative effects of parental incarceration.
UR - http://www.scopus.com/inward/record.url?scp=85026650018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026650018&partnerID=8YFLogxK
U2 - 10.1542/peds.2016-3245
DO - 10.1542/peds.2016-3245
M3 - Article
C2 - 28716823
AN - SCOPUS:85026650018
SN - 0031-4005
VL - 140
JO - Pediatrics
JF - Pediatrics
IS - 2
M1 - e20163245
ER -