TY - JOUR
T1 - Favorable protonation of the (μ-edt)[Fe2(PMe 3)4(CO)2(H-terminal)]+ hydrogenase model complex over its bridging μ-H counterpart
T2 - A spectroscopic and DFT study
AU - Galinato, Mary Grace I.
AU - Whaley, C. Matthew
AU - Roberts, Dean
AU - Wang, Peng
AU - Lehnert, Nicolai
PY - 2011/3
Y1 - 2011/3
N2 - The mechanism of hydrogen production in [FeFe] hydrogenase remains elusive. However, a species featuring a terminal hydride bound to the distal Fe is thought to be the key intermediate leading to hydrogen production. In this study, density functional theory (DFT) calculations on the terminal (H-term) and bridging (μ-H) hydride isomers of (μ-edt)-[Fe2(PMe 3)4(CO)2H]+ are presented in order to understand the factors affecting their propensity for protonation. Relative to H-term, μ-H is 12.7 kcal/mol more stable, which contributes to its decreased reactivity towards an acid. Potential energy surface (PES) calculations for the reaction of the H-term isomer with 4-nitropyridinium, a proton source, further reveal a lower activation energy barrier (14.5 kcal/mol) for H-term than for μ-H (29 kcal/mol). Besides these energetic considerations, the H-term isomer displays a key molecular orbital (MO <139>) that has a relatively strong hydride (1s) contribution (23%), which is not present in the μ-H isomer. This indicates a potential orbital control of the reaction of the hydride complexes with acid. The lower activation energy barrier and this key MO together control the overall catalytic activity of (μ-edt)[Fe2(PMe3)4(CO)2(H-term)] +. Lastly, Raman and IR spectroscopy were performed in order to probe the ν(Fe-H) stretching mode of the two isomers and their deuterated counterparts. A ν(Fe-H) stretching mode was observed for the μ-H complex at 1220 cm-1. However, the corresponding mode is not observed for the less stable H-term isomer.
AB - The mechanism of hydrogen production in [FeFe] hydrogenase remains elusive. However, a species featuring a terminal hydride bound to the distal Fe is thought to be the key intermediate leading to hydrogen production. In this study, density functional theory (DFT) calculations on the terminal (H-term) and bridging (μ-H) hydride isomers of (μ-edt)-[Fe2(PMe 3)4(CO)2H]+ are presented in order to understand the factors affecting their propensity for protonation. Relative to H-term, μ-H is 12.7 kcal/mol more stable, which contributes to its decreased reactivity towards an acid. Potential energy surface (PES) calculations for the reaction of the H-term isomer with 4-nitropyridinium, a proton source, further reveal a lower activation energy barrier (14.5 kcal/mol) for H-term than for μ-H (29 kcal/mol). Besides these energetic considerations, the H-term isomer displays a key molecular orbital (MO <139>) that has a relatively strong hydride (1s) contribution (23%), which is not present in the μ-H isomer. This indicates a potential orbital control of the reaction of the hydride complexes with acid. The lower activation energy barrier and this key MO together control the overall catalytic activity of (μ-edt)[Fe2(PMe3)4(CO)2(H-term)] +. Lastly, Raman and IR spectroscopy were performed in order to probe the ν(Fe-H) stretching mode of the two isomers and their deuterated counterparts. A ν(Fe-H) stretching mode was observed for the μ-H complex at 1220 cm-1. However, the corresponding mode is not observed for the less stable H-term isomer.
UR - http://www.scopus.com/inward/record.url?scp=79951869026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79951869026&partnerID=8YFLogxK
U2 - 10.1002/ejic.201001037
DO - 10.1002/ejic.201001037
M3 - Article
AN - SCOPUS:79951869026
SN - 1434-1948
SP - 1147
EP - 1154
JO - European Journal of Inorganic Chemistry
JF - European Journal of Inorganic Chemistry
IS - 7
ER -