TY - GEN
T1 - Feasibility of end mill cooling using the venturi effect with compressed air
AU - Ruszkiewicz, Brandt J.
AU - Reese, Zachary C.
AU - Roth, John T.
N1 - Publisher Copyright:
Copyright © 2015 by ASME.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015
Y1 - 2015
N2 - In many machining applications tool wear is a major problem. Cutting edges on tools wear out with repeated use leading to their inevitable failure. This tool failure causes a poor surface finish on the work piece being cut. Currently cutting fluid is applied during the cutting process to extend the life of a tool and is effective. Cutting fluid is considered a hazardous material which causes problems during disposal. Disposal of hazardous waste can be expensive causing a push to find alternate green cooling methods. This paper focuses on the feasibility of using the venturi effect on compressed air to replace water based cutting fluids. The two processes are to be compared on the grounds of cooling of the tool and work piece as well as chip removal. Cooling comparisons will be made through the examination of a straight channel cut, and chip removal will be gauged by how large of a mass the air streams can move. It was found that, in these areas, an accelerated stream of compressed air through the correct diameter nozzle outperforms the liquid cutting fluid in both aspects during end milling operations. These findings lead the authors to believe that in the future compressed air, or other pressurized gas, will be the most economical and effective green cooling technique.
AB - In many machining applications tool wear is a major problem. Cutting edges on tools wear out with repeated use leading to their inevitable failure. This tool failure causes a poor surface finish on the work piece being cut. Currently cutting fluid is applied during the cutting process to extend the life of a tool and is effective. Cutting fluid is considered a hazardous material which causes problems during disposal. Disposal of hazardous waste can be expensive causing a push to find alternate green cooling methods. This paper focuses on the feasibility of using the venturi effect on compressed air to replace water based cutting fluids. The two processes are to be compared on the grounds of cooling of the tool and work piece as well as chip removal. Cooling comparisons will be made through the examination of a straight channel cut, and chip removal will be gauged by how large of a mass the air streams can move. It was found that, in these areas, an accelerated stream of compressed air through the correct diameter nozzle outperforms the liquid cutting fluid in both aspects during end milling operations. These findings lead the authors to believe that in the future compressed air, or other pressurized gas, will be the most economical and effective green cooling technique.
UR - http://www.scopus.com/inward/record.url?scp=84945429600&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84945429600&partnerID=8YFLogxK
U2 - 10.1115/MSEC20159430
DO - 10.1115/MSEC20159430
M3 - Conference contribution
AN - SCOPUS:84945429600
T3 - ASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
BT - Processing
PB - American Society of Mechanical Engineers
T2 - ASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
Y2 - 8 June 2015 through 12 June 2015
ER -