Feasibility Verification of Multimodal Wearable Sensing System for Holistic Health Monitoring of Construction Workers

A. Ojha, S. Shakerian, M. Habibnezhad, H. Jebelli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

The unstructured nature of the labor-intensive construction industry negatively affects the health of workers. These challenges require a robust health monitoring approach to accurately monitor workers’ overall health status. Recent advancements in wearable technologies and physiological sensing have provided ample opportunities towards an objective and continuous in-field measurement of workers’ physical and mental status. However, these solutions have mostly focused on a particular health condition. There is a lack of holistic health monitoring to understand the impacts of the construction environment on workers’ health conditions (i.e., physical fatigue, mental stress, and exposure to heat stress). In this regard, the present study investigates the feasibility of a multimodal wearable sensing system to comprehensively monitor construction workers’ overall health status during their ongoing work. To this end, five able-bodied workers were prompted to perform specific construction activities (e.g., roofing, loading/unloading) with light and medium physical intensity while exposed to varying levels of heat stress (i.e., caution level, and danger level). During each task, three biosignals, namely photoplethysmography (PPG), electrodermal activity (EDA), and skin temperature (ST), and were collected from the workers through wearable biosensors. To assess their overall health status, various metrics were extracted from PPG (heart rate, heart rate variability), EDA (electrodermal level), and ST (mean skin temperature). Results of correlation analysis elucidated strong correlation between the extracted physiological metrics with respect to workers’ physical fatigue, mental stress, and heat stress exposure. The findings demonstrated the feasibility of a multimodal sensing system for the holistic health monitoring of construction workers.

Original languageEnglish (US)
Title of host publicationProceedings of the Canadian Society of Civil Engineering Annual Conference 2021 - CSCE21 General Track Volume 1
EditorsScott Walbridge, Mazdak Nik-Bakht, Kelvin Tsun Ng, Manas Shome, M. Shahria Alam, Ashraf el Damatty, Gordon Lovegrove
PublisherSpringer Science and Business Media Deutschland GmbH
Pages283-294
Number of pages12
ISBN (Print)9789811905025
DOIs
StatePublished - 2023
EventAnnual Conference of the Canadian Society of Civil Engineering, CSCE 2021 - Virtual, Online
Duration: May 26 2021May 29 2021

Publication series

NameLecture Notes in Civil Engineering
Volume239
ISSN (Print)2366-2557
ISSN (Electronic)2366-2565

Conference

ConferenceAnnual Conference of the Canadian Society of Civil Engineering, CSCE 2021
CityVirtual, Online
Period5/26/215/29/21

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Feasibility Verification of Multimodal Wearable Sensing System for Holistic Health Monitoring of Construction Workers'. Together they form a unique fingerprint.

Cite this