FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models

Xiaochen Wang, Jiaqi Wang, Houping Xiao, Jinghui Chen, Fenglong Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Foundation models have demonstrated remarkable capabilities in handling diverse modalities and tasks, outperforming conventional artificial intelligence (AI) approaches that are highly task-specific and modality-reliant. In the medical domain, however, the development of comprehensive foundation models is constrained by limited access to diverse modalities and stringent privacy regulations. To address these constraints, this study introduces a novel knowledge injection approach, FEDKIM, designed to scale the medical foundation model within a federated learning framework. FEDKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model using a designed adaptive Multitask Multimodal Mixture Of Experts (M3OE) module. This method not only preserves privacy but also enhances the model's ability to handle complex medical tasks involving multiple modalities. Our extensive experiments across twelve tasks in seven modalities demonstrate the effectiveness of FEDKIM in various settings, highlighting its potential to scale medical foundation models without direct access to sensitive data. Source codes are available at https://github.com/XiaochenWang-PSU/FedKIM.

Original languageEnglish (US)
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages8141-8154
Number of pages14
ISBN (Electronic)9798891761643
DOIs
StatePublished - 2024
Event2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States
Duration: Nov 12 2024Nov 16 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period11/12/2411/16/24

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models'. Together they form a unique fingerprint.

Cite this