Ferroelastic switching for nanoscale non-volatile magnetoelectric devices

S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, Q. He, Y. H. Chu, C. T. Nelson, M. S. Rzchowski, X. Q. Pan, R. Ramesh, L. Q. Chen, C. B. Eom

Research output: Contribution to journalArticlepeer-review

444 Scopus citations

Abstract

Multiferroics, where (anti-) ferromagnetic, ferroelectric and ferroelastic order parameters coexist1-5, enable manipulation of magnetic ordering by an electric field through switching of the electric polarization 6-9. It has been shown that realization of magnetoelectric coupling in a single-phase multiferroic such as BiFeO3 requires ferroelastic (71°, 109°) rather than ferroelectric (180°) domain switching 6. However, the control of such ferroelastic switching in a single-phase system has been a significant challenge as elastic interactions tend to destabilize small switched volumes, resulting in subsequent ferroelastic back-switching at zero electric field, and thus the disappearance of non-volatile information storage. Guided by our phase-field simulations, here we report an approach to stabilize ferroelastic switching by eliminating the stress-induced instability responsible for back-switching using isolated monodomain BiFeO3 islands. This work demonstrates a critical step to control and use non-volatile magnetoelectric coupling at the nanoscale. Beyond magnetoelectric coupling, it provides a framework for exploring a route to control multiple order parameters coupled to ferroelastic order in other low-symmetry materials.

Original languageEnglish (US)
Pages (from-to)309-314
Number of pages6
JournalNature Materials
Volume9
Issue number4
DOIs
StatePublished - Apr 2010

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Ferroelastic switching for nanoscale non-volatile magnetoelectric devices'. Together they form a unique fingerprint.

Cite this