TY - JOUR
T1 - Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary
AU - Liu, Yang
AU - Aziguli, Haibibu
AU - Zhang, Bing
AU - Xu, Wenhan
AU - Lu, Wenchang
AU - Bernholc, J.
AU - Wang, Qing
N1 - Publisher Copyright:
© 2018, Springer Nature Limited.
PY - 2018/10/4
Y1 - 2018/10/4
N2 - Piezoelectricity—the direct interconversion between mechanical and electrical energies—is usually remarkably enhanced at the morphotropic phase boundary of ferroelectric materials1–4, which marks a transition region in the phase diagram of piezoelectric materials and bridges two competing phases with distinct symmetries1,5. Such enhancement has enabled the recent development of various lead and lead-free piezoelectric perovskites with outstanding piezoelectric properties for use in actuators, transducers, sensors and energy-harvesting applications5–8. However, the morphotropic phase boundary has never been observed in organic materials, and the absence of effective approaches to improving the intrinsic piezoelectric responses of polymers9,10 considerably hampers their application to flexible, wearable and biocompatible devices. Here we report stereochemically induced behaviour in ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) copolymers, which is similar to that observed at morphotropic phase boundaries in perovskites. We reveal that compositionally tailored tacticity (the stereochemical arrangement of chiral centres related to the TrFE monomers11,12) can lead to intramolecular order-to-disorder evolution in the crystalline phase and thus to an intermediate transition region that is reminiscent of the morphotropic phase boundary, where competing ferroelectric and relaxor properties appear simultaneously. Our first-principles calculations confirm the crucial role of chain tacticity in driving the formation of this transition region via structural competition between the trans-planar and 3/1-helical phases. We show that the P(VDF-TrFE) copolymer with the morphotropic composition exhibits a longitudinal piezoelectric coefficient of −63.5 picocoulombs per newton, outperforming state-of-the-art piezoelectric polymers10. Given the flexibility in the molecular design and synthesis of organic ferroelectric materials, this work opens up the way for the development of scalable, high-performance piezoelectric polymers.
AB - Piezoelectricity—the direct interconversion between mechanical and electrical energies—is usually remarkably enhanced at the morphotropic phase boundary of ferroelectric materials1–4, which marks a transition region in the phase diagram of piezoelectric materials and bridges two competing phases with distinct symmetries1,5. Such enhancement has enabled the recent development of various lead and lead-free piezoelectric perovskites with outstanding piezoelectric properties for use in actuators, transducers, sensors and energy-harvesting applications5–8. However, the morphotropic phase boundary has never been observed in organic materials, and the absence of effective approaches to improving the intrinsic piezoelectric responses of polymers9,10 considerably hampers their application to flexible, wearable and biocompatible devices. Here we report stereochemically induced behaviour in ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) copolymers, which is similar to that observed at morphotropic phase boundaries in perovskites. We reveal that compositionally tailored tacticity (the stereochemical arrangement of chiral centres related to the TrFE monomers11,12) can lead to intramolecular order-to-disorder evolution in the crystalline phase and thus to an intermediate transition region that is reminiscent of the morphotropic phase boundary, where competing ferroelectric and relaxor properties appear simultaneously. Our first-principles calculations confirm the crucial role of chain tacticity in driving the formation of this transition region via structural competition between the trans-planar and 3/1-helical phases. We show that the P(VDF-TrFE) copolymer with the morphotropic composition exhibits a longitudinal piezoelectric coefficient of −63.5 picocoulombs per newton, outperforming state-of-the-art piezoelectric polymers10. Given the flexibility in the molecular design and synthesis of organic ferroelectric materials, this work opens up the way for the development of scalable, high-performance piezoelectric polymers.
UR - http://www.scopus.com/inward/record.url?scp=85054337665&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054337665&partnerID=8YFLogxK
U2 - 10.1038/s41586-018-0550-z
DO - 10.1038/s41586-018-0550-z
M3 - Article
C2 - 30283102
AN - SCOPUS:85054337665
SN - 0028-0836
VL - 562
SP - 96
EP - 100
JO - Nature
JF - Nature
IS - 7725
ER -