Finite element analysis of electroactive polymer and magnetoactive elastomer based actuation for origami-inspired folding

Wei Zhang, Saad Ahmed, Sarah Masters, Zoubeida Ounaies, Mary Frecker

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

With the development of smart materials such as electroactive polymers and magnetoactive elastomers, active origami structures, where desired folded shapes can be achieved using external electric and magnetic stimuli, are showing promising potential in many engineering applications. In this study, finite element analysis (FEA) models are developed in 3-D using COMSOL Multiphysics software for unimorph bending and folding actuated using a single external field, and a bi-fold configuration which is actuated using multi-field stimuli. The objectives of the study are: 1) to investigate folding behavior and effects of geometric parameters, and 2) to maximize actuation for a given stimulus. Experimentally determined mechanical pressures and moments are applied as external loads to simulate electric and magnetic fields, respectively. Good agreement is obtained in the tip displacement and folding angles between the simulation and experiments, which demonstrates the effectiveness of the FEA model.

Original languageEnglish (US)
Title of host publicationMultifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850480
DOIs
StatePublished - 2016
EventASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016 - Stowe, United States
Duration: Sep 28 2016Sep 30 2016

Publication series

NameASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Volume1

Other

OtherASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Country/TerritoryUnited States
CityStowe
Period9/28/169/30/16

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Civil and Structural Engineering
  • Control and Systems Engineering
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Finite element analysis of electroactive polymer and magnetoactive elastomer based actuation for origami-inspired folding'. Together they form a unique fingerprint.

Cite this