Finite element for beams having segmented active constrained layers with frequency-dependent viscoelastic material properties

George A. Lesieutre, Usik Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

A finite element for planar beams with active constrained layer damping treatments is presented. Features of this non- shear locking element include a time-domain viscoelastic material model, and the ability to readily accommodate segmented (i.e. non-continuous) constraining layers. These features are potentially important in active control applications: the frequency-dependent stiffness and damping of the viscoelastic material directly affects system modal frequencies and damping; the high local damping of the viscoelastic layer can result in complex vibration modes and differences in the relative phase of vibration between points; and segmentation, an effective means of increasing passive damping in long-wavelength vibration modes, affords multiple control inputs and improved performance in an active constrained layer application. The anelastic displacement fields (ADF) method is used to implement the viscoelastic material model, enabling the straightforward development of time-domain finite elements. The performance of the finite element is verified through several sample modal analyses, including proportional-derivative control based on discrete strain sensing. Because of phasing associated with mode shapes, control using a single continuous ACL can be destabilizing. A segmented ACL is more robust than the continuous treatment, in that the damping of modes at least up to the number of independent patches is increased by control action.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSociety of Photo-Optical Instrumentation Engineers
Pages315-328
Number of pages14
ISBN (Print)0819424587
StatePublished - 1997
EventSmart Structures and Materials 1997: Passive Damping and Isolation - San Diego, CA, USA
Duration: Mar 3 1997Mar 4 1997

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume3045
ISSN (Print)0277-786X

Other

OtherSmart Structures and Materials 1997: Passive Damping and Isolation
CitySan Diego, CA, USA
Period3/3/973/4/97

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Finite element for beams having segmented active constrained layers with frequency-dependent viscoelastic material properties'. Together they form a unique fingerprint.

Cite this